Biocompatibility of Diamond-Like Carbon Coated NiTi Orthodontic Wire and Acrylic Resin Teeth

2005 ◽  
Vol 284-286 ◽  
pp. 783-786 ◽  
Author(s):  
S. Kobayashi ◽  
K. Ozeki ◽  
Y. Ohgoe ◽  
Li Gei ◽  
K.K. Hirakuri ◽  
...  

A variety of dental devices such as orthodontics, artificial teeth are implanted in oral cavity for long term. The implant coated with protective films, which can reduce corrosion and wear, may prevent the problems described above and extend the lifetime of implants to the benefit of the patients. Diamond-like carbon films have extreme hardness, low friction coefficients, chemical inertness, and high-corrosion resistance. Moreover, these properties make the good candidates as biocompatible coatings for dental devices. In this study, DLC films using the plasma CVD method deposited on acrylic resin and orthodontic archwires have investigated to detect the Ni release from the wires and to estimate cell growth in E-MEM immersed acrylic plates. After 6 months, the concentration of the nickel release from DLC-coated wire and Non-coated wire was 150 [ppb] and 933 [ppb], respectively. Results indicated DLC films inhibit the release of these materials, and prevent degradation of these materials in the solution.

Author(s):  
S. Kobayashi ◽  
Y. Ohgoe ◽  
K. Ozeki ◽  
Li Gei ◽  
K.K. Hirakuri ◽  
...  

2000 ◽  
Vol 6 (S2) ◽  
pp. 432-433
Author(s):  
X. Chen ◽  
J. M. Gibson ◽  
J. Sullivan

Hydrogen-free amorphous diamond-like carbon films have stimulated great interest because of their useful properties, such as high hardness, chemical inertness, thermal stability, wide optical gap, and negative electron affinity[l]. Consequently, they may have various potential applications in mechanical and optical coatings, MEMS systems, chemical sensors and electronic devices. Amorphous diamond-like carbon films often contains significant amounts of four-fold or sp3 bonded carbon, in contrast to amorphous carbon films prepared by evaporation or sputtering which consist mostly of three-fold or sp2 bonded carbon. The ratio and the structure configurations of these three-fold and four-fold carbon atoms certainly decide the properties of these amorphous diamond-carbon films. Although the ratio of three-fold and four-fold carbon has been studied with Raman spectroscopy and electron-loss-energy spectroscopy, very little has been understood regarding key questions such as how the three-fold and the four-fold carbon atoms are integrated in the film, and what structures those three-fold carbon atoms take.


1997 ◽  
Vol 12 (11) ◽  
pp. 3102-3105 ◽  
Author(s):  
Hao Wang ◽  
Ming-Rong Shen ◽  
Zhao-Yuan Ning ◽  
Chao Ye ◽  
He-Sun Zhu

Diamond-like carbon (DLC) films have been prepared by electrolysis of methanol solution using a pulse-modulated source. The deposition rate of the films is enhanced significantly compared to that of dc value. That the films do not contain bonded hydrogen is confirmed by infrared spectra. The structures of the films are characterized by Raman spectroscopy. These films show chemical inertness and hardness values in the range 12.5–19 GPa. Current-voltage characteristics of the films are measured, indicating that the resistivity is in the 107 Ω cm range and the breakdown field is larger than 1 MV cm−1.


2012 ◽  
Vol 622-623 ◽  
pp. 1554-1558
Author(s):  
Nattaporn Khamnaulthong ◽  
Krisda Siangchaew ◽  
Pichet Limsuwan

Tetrahedral amorphous diamond-like carbon films were deposited on magnetic recording head by Filtered Cathodic Arc and subsequently thermally heated to various conditions. Raman spectroscopy was then performed to understand film structure; and mechanical property in terms of wear resistance was investigated by nanoindenter. The Raman spectra revealed that G position, FWHM of G peak and Id/Ig changed as a function of heating temperature and time which also agree well with wear depth measured.


1996 ◽  
Vol 06 (C5) ◽  
pp. C5-91-C5-95 ◽  
Author(s):  
S. Lee ◽  
B. Chung ◽  
T.-Y. Ko ◽  
H. Cho ◽  
D. Jeon ◽  
...  

2014 ◽  
Vol 29 (9) ◽  
pp. 941
Author(s):  
JIANG Jin-Long ◽  
WANG Qiong ◽  
HUANG Hao ◽  
ZHANG Xia ◽  
WANG Yu-Bao ◽  
...  

2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


Sign in / Sign up

Export Citation Format

Share Document