Third-Body-Wear as a Risk Factor in Joint Endoprosthetics

2005 ◽  
Vol 284-286 ◽  
pp. 995-998 ◽  
Author(s):  
Thomas Oberbach ◽  
Wilfried Glien ◽  
Christian Kaddick

It is well known, that wear of the articulation partners of hip joint prostheses affect the long-term durability of the implants in vivo. The wear is dramatically increased if particles in the artificial joint gap act as third body. Those particles can also occur after a fracture of a ceramic component. Until now there are some different guidelines which coupling (metal-polyethylene, ceramic-polyethylene, ceramic-ceramic) should be used for revision. We tested and compared the wear behaviour of a ceramic-PE-pairing and a ceramic-ceramic-pairing under third body wear conditions with alumina-particles in a hip joint simulator.

2008 ◽  
Vol 396-398 ◽  
pp. 161-164 ◽  
Author(s):  
Thomas Oberbach ◽  
Sabine Begand ◽  
Christian Kaddick

Wear of the articulation partners in artificial joints for hip or knee is known to influence the in vivo survival rate of the implants. Wear amount can be strongly increased if third body wear occurs in the joint gap. Alumina ceramic is noted for a good wear resistance even under these worst case conditions. We tested the wear behaviour of the new dispersion ceramics ZTA (Zirconia Toughened Alumina) and ATZ (Alumina Toughened Zirconia) in comparison to alumina for the couplings ceramic on PE and ceramic on ceramic in a hip joint simulator in presence of third body particles.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Vesa Saikko

The established biaxial rocking motion (BRM) hip joint simulator was complemented by a novel friction measurement accessory. This simple and practical system, which was easily added to an existing BRM design, is described in detail and shown to perform well in long-term wear tests and in comparative tests of 24 h duration involving several different bearing couples. The system was based on the measurement of frictional torque about the leaning axis of the lower component, the femoral head. In the 28 mm CoCr-on-ultrahigh molecular weight polyethylene articulation with diluted calf serum lubricant at body temperature and 1 kN static load, the maximum value of frictional torque during a cycle was 1.2 N m on the average. The alternative system based on the measurement of torque about the vertical loading axis was shown to be less sensitive and highly insensitive when contact area was small, as was the case with alumina-on-alumina.


Wear ◽  
2005 ◽  
Vol 259 (7-12) ◽  
pp. 882-886 ◽  
Author(s):  
Aaron Essner ◽  
Gregg Schmidig ◽  
Aiguo Wang

Author(s):  
G Cheng ◽  
J-L Yu ◽  
S-R Ge ◽  
S Zhang

In order to evaluate the movement performance of a human hip joint, a novel parallel manipulator called 3SPS+1PS bionic parallel test platform is proposed in this article. SPS denotes the spherical-prismatic-spherical leg, and PS the prismatic-spherical leg where only the prismatic joint is actuated and hence underlined. For the 3SPS+1PS bionic parallel test platform with four degrees of freedom including three rotations and one translation, the formulae for solving the inverse kinematics equations are derived based on the quaternion method. Unit quaternion is used to represent the position and orientation of a moving platform, and singularities caused by Euler angles are avoided. Combining the topological structure characteristics of the parallel manipulator, the orientation workspace of the moving platform at a given translation position is constructed. Moreover, the procedures to solve and evaluate the orientation workspace of the parallel manipulator are obtained. In order to ensure dexterity and obtain more workspace, the condition index is studied by the condition number and singular values analysis of the dimensionally homogeneous Jacobi matrix. The parallel manipulator has three rotations about the Z-axis, the Y-axis, and the X-axis applied to represent three rotation motions (flexion/extension (FE), abduction/adduction (AA), and internal/external (IE) rotation motion) of a human hip joint, respectively. The numerical results illustrate that the 3SPS + 1PS bionic parallel test platform generates ±25° to ±108° in FE, −20° to 20° in AA, and −21° to 21° in IE rotation where the maximum permissible condition numbers of Jacobi matrix are set within the range 15–20 and the parallel manipulator can provide full-scale friction motion for hip joint simulator. In the dexterous orientation workspace, the slide track on the friction counterface of hip joint prostheses can be varied consistently. By verifying the lengths of the SPS-type active legs, the parallel manipulator can provide cross-path multidirectional slide motion for hip joint prostheses. The three-dimensional model and kinematics simulation of the manipulator are established and analysed. The simulation results prove that the 3SPS + 1PS bionic parallel test platform can accurately represent human hip joint motion and provide more reliable experimental data for hip joint prostheses in clinical application. The research builds the theoretical basis for its bionic motion simulation in practical application.


2012 ◽  
Vol 45 ◽  
pp. S268 ◽  
Author(s):  
Philipp Damm ◽  
Robert Ackermann ◽  
Alwina Bender ◽  
Friedmar Graichen ◽  
Georg Bergmann

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3805
Author(s):  
Jian Su ◽  
Jian-Jun Wang ◽  
Shi-Tong Yan ◽  
Min Zhang ◽  
Hui-Zhi Wang ◽  
...  

Cobalt-chromium-molybdenum alloy (CoCrMo) and ceramic are the two most common materials for the femoral head in hip joint prostheses, and the acetabular liner is typically made from ultra-high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (XLPE), or highly cross-linked polyethylene blended with Vitamin E (VEXLPE). The selection of suitable materials should consider both wear performance and cost-effectiveness. This study compared the wear rate between different friction pairs using a hip joint simulator and then recommended a suitable prosthesis based on the corresponding processing technology and cost. All wear simulations were performed in accordance with ISO 14242, using the same hip joint simulator and same test conditions. This study found that when using the same material for the femoral head, the XLPE and VEXLPE liners had a lower wear rate than the UHMWPE liners, and the wear rate of the XLPE liners increased after blending with Vitamin E (VEXLPE). There was no significant difference in the wear rate of XLPE when using a CoCrMo or ceramic head. Considering the wear rate and cost-effectiveness, a CoCrMo femoral head with an accompanying XLPE liner is recommended as the more suitable combination for hip prostheses.


Author(s):  
S Affatato ◽  
A Mattarozzi ◽  
P Taddei ◽  
P Robotti ◽  
R Soffiatti ◽  
...  

Total hip replacement has become one of the most successful orthopaedic procedures. However, complications due to infections may give serious problems and have devastating consequences for the hip implant. The use of a temporary three-dimensional polymethylmethacrylate (PMMA) cement spacer may be an alternative to solve infections in hip implants, improving the lives of patients awaiting reimplantation. In order to evaluate their wear behaviour, five PMMA Spacer-G® femoral heads were tested against five post-mortem pelves in a hip joint simulator with bovine calf serum as lubricant. The surface of the worn spacers was characterized by scanning electron microscopy (SEM) analysis; all the samples revealed a similar morphology, showing areas characterized by different degrees of wear. Particle debris was isolated from the lubricant and PMMA particles and bone fractions were quantified. The amount of debris was found to be higher than where no-temporary prostheses were used. However, this result is acceptable since wear debris is removed by lavage irrigation when the Spacer-G® is explanted. On the basis of these data, it is considered that the use of the cement Spacer-G® could be a promising approach to the treatment of complicated infections of the hip joint. Therefore, Spacer-G® is worthy of further research.


2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
M. Sigler ◽  
S. Huell ◽  
R. Foth ◽  
W. Ruschewski ◽  
T. Tirilomis ◽  
...  

1999 ◽  
Vol 12 (04) ◽  
pp. 173-177 ◽  
Author(s):  
R. L. Aper ◽  
M. D. Brown ◽  
M. G. Conzemius

SummaryTreatment of canine hip dysplasia (CHD) via triple pelvic osteotomy (TPO) is widely accepted as the treatment that best preserves the existing hip joint. TPO, however, has several important disadvantages. In an effort to avoid some of the difficulties associated with TPO an alternative method of creating acetabular ventroversion (AW) was sought. The purpose of this study was to explore the effects of placement of a wedge in the sacroiliac (SI) joint on A W and to compare this to the effect of TPO on A W . On one hemipelvis a 30° pelvic osteotomy plate was used for TPO. The contralateral hemipelvis had a 28° SI wedge inserted into the SI joint. Pre- and postsurgical radiographs of each pelvis were taken and the angular measurements were recorded. On average, the 28° SI wedge resulted in 20.9° of A W, the 30° canine pelvic osteotomy plate resulted in 24.9° A W . Significant differences were not found (p >0.05) between the two techniques. Sacroiliac wedge rotation effectively creates A W and has several theoretical advantages when compared to TPO. The in vivo effects of sacroiliac wedge rotation should be studied in order to evaluate the clinical effect of the technique.Sacroiliac wedge rotation was tested as an alternative method to increase the angle of acetabular ventroversion. This technique effectively rotated the acetabulum and has several theoretical advantages when compared to triple pelvic osteotomy.


Sign in / Sign up

Export Citation Format

Share Document