Effect of Cyclic Loading on Crack Propagation of X-70 Pipeline Steel in Near-Neutral pH Solution

2005 ◽  
Vol 297-300 ◽  
pp. 2501-2507 ◽  
Author(s):  
Hao Guo ◽  
Guang Fu Li ◽  
Xun Cai ◽  
Jiasheng Bai ◽  
Wu Yang

Crack propagation of X-70 pipeline steel in near-neutral pH solution was studied under different modes of cyclic loading. A revised equation of crack growth rate vs. Δ K was obtained. Average crack growth rate increased with cycles under conditions of different R values. Linear shape notch specimen made cracks much easier to initiate and propagate than V-shaped notch specimen did. For different R values, the curves of crack growth rate with cycles were similar, but the platform propagation period and quick propagation period were different obviously. Crack growth rate at both periods increased and thus failure time decreased markedly with decrease of R value. The propagation directions of cracks were different under different cyclic loading conditions. Under mode I (single tensile stress) cyclic loading, cracks were straight and perpendicular to the tensile stress axis, while under mixed-mode I/III (tensile/shear stress) cyclic loading, cracks were sinuous and did not propagate in the direction perpendicular to the main tensile stress axis.

Author(s):  
Kiminobu Hojo ◽  
Shinichi Kawabata

Ductile crack growth calculation method under excessive cyclic loading in a fitness for service rule has not been established even in Mode I. The authors simulated ductile crack growth behavior of CT specimens under cyclic loading executed in a committee of the Japan Welding Society. Sensitivity of the used stress-strain curves by monotonic or cyclic loading and the effect of the hardening rule were investigated. For evaluation of the crack growth rate under excessive cyclic loading, the parameter ΔJ was applied and compared with the rate of the JSME rules for FFS.


Author(s):  
Adel Hamdi ◽  
Abdelkader Boulenouar ◽  
Noureddine Benseddiq ◽  
Sofiane Guessasma

This work tackles crack propagation mechanisms of styrene butadiene and natural rubbers, both subject to cyclic loading under a positive load ratio. The experimental evidence is based on pure shear loading of notched specimens supported by SEM analysis of fracture surfaces. Relationship between crack growth rate and tearing energy is revisited. The experimental results show that the fatigue behaviour of studied vulcanisates can be clearly separated in the power-law regime. Furthermore, the reported results from the literature extend this statement to any load condition. Fracture surface observations reveal also differences in energy dissipation mechanisms inferred to structural mutations in the case of natural rubber. Alternation of rough and smooth fracture surfaces associated with change in crack growth rate is more likely to occur for styrene butadiene rubber. All observations suggest that crack branching is a secondary ranked dissipation mechanism for the studied materials compared to crack deviation.


Author(s):  
Mengshan Yu ◽  
Weixing Chen ◽  
Karina Chevil ◽  
Greg Van Boven ◽  
Jenny Been

From extensive investigations for over 30 years since the discovery of near-neutral pH stress corrosion cracking (NNpHSCC), the physical processes of crack initiation and growth have been determined, despite that some details in various aspects of crack initiation and growth are still to be understood. The growth curve is a function of crack growth by direct dissolution of steels at localized areas on pipe surface during initiation or at the tip of a crack during early stage of crack growth (the dissolution growth curve), and by a process involving the interaction of fatigue and hydrogen embrittlement (corrosion fatigue, the hydrogen enhanced fatigue growth curve) in Stage II after crack initiation and early stage of crack growth. For the latter case, recent research shows that crack growth rate can be substantially enhanced by variable amplitude cyclic loading. One of the most severe scenarios of cyclic loading in terms of crack growth rate is the underload type of pressure fluctuations that is often found within 30 km downstream of a compressor station. This investigation is aimed to evaluate pressure scenarios that could reduce or retard crack growth during pipeline operation. Specifically, the effect of pressure holds was investigated. Different periods of static hold were performed to an X65 pipeline steel exposed to a near-neutral pH solution. It was found that a static hold at the maximum load for one hour immediately after a large depressurization-repressurization cycle (underload cycle) yielded the lowest crack growth rate, which was about one third of that of constant amplitude fatigue without the static hold. Static holds for a period shorter or longer than one hour have yielded higher crack growth rates. This observation can be applied to field pipelines during operations to retard crack propagation.


Author(s):  
Kiminobu Hojo

Abstract Ductile crack growth calculation method under excessive cyclic loading in a fitness for service rule has not been established even in Mode I. Since 2017 to 2019 the author had tried to establish how to determine the parameters of the combined hardening rule and applied it to simulate the ductile crack growth behavior of the 1TC(T) specimens of the different loading levels for ferritic steel. Also ΔJ calculation using the reference stress method, and the transferred crack growth rate from a code were applied to estimate the ductile crack growth. Several equations of the reference stress method were tried to apply in the previous paper. Further the prediction procedure using the ΔJ, the reference stress method and da/dN-ΔJ curve based on the JSME rules on fitness for service (FFS) was applied to the pipe fracture tests under cyclic loading and its applicability was discussed for the case of a pipe structure in the previous paper. In this paper similar procedures were applied to 1TC(T) specimens of stainless steel. The combined hardening rule was applied for the constitution law of stress-strain curve. The numerical simulation with the combined rule traced the load-load line displacement curve under the cyclic loading experiments of 1TC(T). Also austenitic stainless fatigue crack growth rate (FCGR) in air condition from the JSME rules on FFS bounded the experimental crack growth rate, which means the FCGR of the JSME rules is applicable to fatigue crack growth calculation.


2012 ◽  
Vol 224 ◽  
pp. 303-306
Author(s):  
Chen Chen Ma ◽  
Xiao Gui Wang

The fatigue initiation and non-self-similar fatigue crack growth behavior of three notched compact tension and shear specimens of 16MnR steel under mixed mode I/II loading were investigated. The plane-stress finite element model with the implemented Armstrong-Frederick type cyclic plasticity model was used to calculate the elastic-plastic stress-strain responses. A recently developed dynamic crack growth model was used to simulate the effects of loading history on the successive crack growth. With the outputted numerical results, a multiaxial fatigue damage criterion based on the critical plane was used to determine the location of fatigue initiation. A formula of fatigue crack growth rate, which is based on the postulation that the fatigue initiation and crack growth have the same damage mechanism, was then used to calculate the transient crack growth rate and determine the non-self-similar crack growth path. The predicted fatigue initiation position, crack path and crack growth rate are in excellent agreement with the experimental data.


Author(s):  
Kokleang Vor ◽  
Catherine Gardin ◽  
Christine Sarrazin-Baudoux ◽  
Jean Petit ◽  
Claude Amzallag

The scope of this study is to investigate the effect of tensile prestrain on crack growth behavior in a 304L stainless steel. Fatigue crack propagation tests were performed on single-edge notched tension (SENT) raw specimens (0% of prestrain) and on prestrained specimens (2% and 10%). On one hand, it is found that the different levels of prestrain exhibit no significant influence on crack propagation in the high range of Stress Intensity Factor (SIF), where there is no detectable crack closure. On the other hand, a clear effect of prestrain on crack growth rate can be observed in the near threshold region where closure is detected. Thus, it can be concluded that the prestrain mainly affects the crack growth rate through its influence on the crack closure.


2014 ◽  
Vol 1004-1005 ◽  
pp. 142-147
Author(s):  
Ming Liu ◽  
Kun Zhang ◽  
Sheng Long Dai ◽  
Guo Ai Li ◽  
Min Hao ◽  
...  

The fatigue crack propagation behaviors of an Al-Cu-Mg alloy are investigated in different environments and with varying stress ratios. Fatigue experiments are carried out via a fatigue crack growth rate test in laboratory air, a 3.5% (mass fraction) NaCl solution and a tank seeper. The results show that a corrosion environment has an obvious influence on the fatigue crack growth rate, and the degrees of influence of the two different corrosive environments are basically identical. When the stress ratio is R = 0.5 and 0.06 with a decrease of the stress intensity factor, the difference in the crack propagation rates for the corrosion and air environments gradually increases. However, the corrosion acceleration in each stage of crack propagation is obvious while R=−1.


Sign in / Sign up

Export Citation Format

Share Document