Flexural Behavior of Concrete Beam Reinforced with Steel and FRP Re-Bars

2006 ◽  
Vol 306-308 ◽  
pp. 1367-1372
Author(s):  
Jeong Hun Nam ◽  
Seung Sik Lee ◽  
Soon Jong Yoon ◽  
Won Sup Jang ◽  
S.K. Cho

FRP composite materials are widely applicable in the construction industries as a load-bearing structural element or a reinforcing and/or repairing materials for the concrete. In this paper, we presented the flexural behavior of steel reinforced concrete beams reinforced with FRP re-bars manufactured by different fibers but the same vinylester resin. Experimental investigation pertaining to the load-deflection and load-strain characteristics of steel reinforced concrete beams reinforced with FRP re-bars with garnet coated surface is presented and the theoretical prediction is also conducted. In the investigation, the effects of FRP re-bar reinforcement in addition to the steel reinforcement are estimated. The experimental results are compared with theoretical predictions. Good agreements are observed.

2019 ◽  
Vol 276 ◽  
pp. 01033
Author(s):  
Muhtar ◽  
Sri Murni Dewi ◽  
Wisnumurti ◽  
As’ad Munawir

Bamboo can use at the simple concrete construction because of the tensile strength of its mechanical property. Meanwhile, a slippery surface of the bamboo caused cracks in the bamboo reinforced concrete beam (BRC) not to spread and yield slip failure between a bamboo bar and concrete. Load test at the BRC beam yield humble load capacity. This study aims to improve the capacity and behavior of BRC beam bending by giving waterproof coating, sand, and hose clamp installation. The beam test specimen with the size of 75x150x1100mm made as many as 26 pieces with the variety of reinforcement. The hose clamp used on the bamboo reinforcement varies with a distance of 0 cm, 15 cm, 20 cm, and 25 cm. The testing using a simple beam with two-point loading. The test results show that BRC beams have different bending behavior compared to the steel reinforced concrete beam (SRC).


2013 ◽  
Vol 486 ◽  
pp. 211-216
Author(s):  
Jan Zatloukal ◽  
Petr Konvalinka

The flexural behavior of FRP (Fiber Reinforced Polymer) reinforced concrete beam has been the topic of intensive previous research, because of the spread of use of modern FRP composite materials in the building industry as concrete reinforcement. The behavior of FRP reinforced member is different from the one reinforced with regular steel reinforcement, mainly because of vast difference between moduli of elasticity of FRP composite reinforcement bars and steel. This difference results in the fact that conventional design methods used for years in the field of reinforced concrete structures using steel reinforcement give poor results if attempted use with FRP reinforced structural members. Results of conventional methods are so poor that use of such methods would be dangerous they tend to overestimate load carrying capacity and underestimate deformations both resulting in unsafe predictions. This paper points to formulating easy to use and comprehensible method of predicting moment capacity of FRP reinforced concrete beams subjected to bending loading and validation of the proposed method via set of experiments.


Author(s):  
S. O. Chepilko ◽  

Issues of calculating steel-reinforced concrete beams are considered taking into account a nonlinear concrete diagram based on the Sargin formula. The nonlinear system of equations for determination of curvature and neutral axis, which is solved numerically, is written in explicit form. Explicit expressions for determination of other calculated quantities needed for design of steel-reinforced concrete beams are derived. Numerical examples are given. The analysis of accounting nonlinearity in comparison with the linear calculation is carried out.


The flexural behavior of concrete beams reinforced with bamboo was studied experimentally. Bamboo was used as the main reinforcement with different bonding materials in place of steel. A nominal mix of M20 grade concrete was adopted for the beam design. The Bamboo surface was treated with common binding materials like Araldite and Bitumen. Araldite and Bitumen are good binding materials used to connect materials like steel, carbon and many different materials. Two specimens were casted with bitumen coating, two specimens were coated with araldite, two specimens were casted without any binder coating and a specimen was casted using normal steel reinforcement. Beams were casted with bamboo reinforcement and cured for 28 days. Deflection and flexural behavior of the beams were monitored. The test results imply that araldite coating in concrete beams with bamboo reinforcement increased the flexural strength to that of bamboo reinforced concrete using bitumen which is lesser strength to that of steel reinforced concrete beam.


2015 ◽  
Vol 129 ◽  
pp. 111-121 ◽  
Author(s):  
Ilker Fatih Kara ◽  
Ashraf F. Ashour ◽  
Mehmet Alpaslan Köroğlu

2011 ◽  
Vol 368-373 ◽  
pp. 2094-2097
Author(s):  
Rui Ren ◽  
Jian Yang Xue ◽  
Zong Ping Chen ◽  
Ze Long Mi

8 channel steel reinforced concrete beams and 1 reinforced concrete beam are tested to study the capacity of channel steel reinforced concrete beam(CSRCB)under pure torque. The failure mode and process of the specimens are observed, And the working mechanism of channel steel skeleton and the concrete are analyzed. It is shown that the concrete strength, stirrup disposition and channel steel have significant effects on the torsional capacity of the beam. The calculation formula for torsional craze torque and ultimate torsional capacity of the CSRCB member are also proposed .


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Seung-Ki Kim ◽  
Woosuk Kim ◽  
Sang-Mook Han

This experimental research was performed to evaluate the shear and flexural behavior for two cases of reinforced concrete beams: ultrahigh-performance concrete (UHPC) and normal-strength concrete jacketed with UHPC. The experiment was performed to examine the optimum para-aramid fiber to reinforce the ductile UHPC, with the test variables fiber diameter and length. Beam tests were then performed to evaluate the performance of the UHPC and jacketed beams. The UHPC beam tests with and without stirrups were conducted to evaluate flexural and shear behavior, respectively. The beam tests with and without jacketing were conducted to evaluate the reinforcement performance of UHPC.


Sign in / Sign up

Export Citation Format

Share Document