Performance of Osteoinductive Biphasic Calcium-Phosphate Ceramic in a Critical-sized Defect in Goats

2006 ◽  
Vol 309-311 ◽  
pp. 1303-1306 ◽  
Author(s):  
Pamela Habibovic ◽  
Mirella van den Doel ◽  
Clemens A. van Blitterswijk ◽  
K. de Groot

Osteoinductive biomaterials are able of inducing bone formation at ectopic, i.e. extraskeletal implantation sites. It is, however, important to investigate whether osteoinductive biomaterials perform better when implanted orthotopically as well, in particular in clinically relevant criticalsized defects. In this study, an osteoinductive and a non-osteoinductive biphasic calcium-phosphate (BCP) ceramic were compared in a critical-sized iliac wing defect that allows for paired comparison. After 12 weeks of implantation in the critical-sized defect, the osteoinductive BCP1150 ceramic showed significantly more bone than the non-osteoinductive BCP1300 ceramic. In addition, the analysis of fluorochrome markers, which were administered to the animals 4, 6 and 8 weeks after implantation in order to visualize the bone growth dynamics, showed an earlier start of bone formation in BCP1150 as compared to BCP1300. Significantly better performance of osteoinductive ceramic in a critical-sized orthotopic defect in a large animal model in comparison to the non-osteoinductive ceramic suggests osteoinduction to be clinically relevant.

2005 ◽  
Vol 873 ◽  
Author(s):  
Balasundaram G ◽  
Sato M ◽  
Webster TJ

AbstractIn an effort to decrease the number of problems associated with osteoporosis, the long-term goal of the present study is to design calcium phosphate-based nanoparticles that specifically attach to areas of low bone density and once attached, allow for the targeted release of bioactive agents that can quickly increase bone formation. Efforts are focused on nanoparticles of calcium phosphate-based materials since they are similar in size and chemistry to the major inorganic components of bone. As a first step in this research, the objective of the present study was to synthesize nanoparticles of crystalline hydroxyapatite (or HA) and amorphous calcium phosphate. Crystalline HA is stable under physiological fluids and, thus, will release embedded bioactive agents slowly. Alternatively, amorphous calcium phosphate is highly biodegradable and will, thus, release embedded bioactive agents quickly. A further objective of the present study was to functionalize such inorganic biodegradable materials with amino groups which would allow for the subsequent attachment of entities to direct such nanoparticles to osteoporotic bone and increased bone formation once attached. One promising approach to direct the nanoparticles to osteoporotic bone is to attach antibodies to pentosidine on the nanoparticles since pentosidine is present in higher amounts in osteoporotic compared to healthy bone. A promising approach to increase bone growth once nanoparticles attach to osteoporotic bone, is to embed nanoparticles with regions of the bone growth factor: bone morphogenic protein-2 (or BMP-2). Results of this study demonstrated the successful synthesis of both crystalline HA and amorphous calcium phosphate nanoparticles. Furthermore, results showed that these nanoparticles can be functionalized with versatile amino groups. In this manner, this study takes the first steps toward utilizing calcium phosphate based nanoparticles to reverse bone loss associated with osteoporosis.


2007 ◽  
Vol 361-363 ◽  
pp. 439-442
Author(s):  
Borhane H. Fellah ◽  
Said Kimakhe ◽  
G. Daculsi ◽  
Pierre Layrolle

This study aims at evaluating bone growth in critical-sized femoral defects of rats filled with macro micro porous biphasic calcium phosphate ceramic (MBCP) cylinders surrounded or not by a resorbable collagen membrane. Femoral defects left empty (control) exhibited partial bone ingrowths after 3 and 6 weeks and were completely healed at 12 weeks. The defects filled with the collagen membranes appeared partially healed suggesting that the membranes constraint bone ingrowth. Bone formation occurred around the collagen membrane which partially degraded over time. In the MBCP/membrane group, bone has grown inside the macro pores of the MBCP cylinders. Bone ingrowth was more rapid and abundant in the defects filled with MBCP alone. The combination MBCP/collagen membrane may be beneficial for the reconstruction of large bone defects without using repetitive surgeries and autologous bone grafting.


2005 ◽  
Vol 284-286 ◽  
pp. 285-288
Author(s):  
Oliver Malard ◽  
Jean Michel Bouler ◽  
Jerome Guicheux ◽  
Olivier Gauthier ◽  
E. Lerouxel ◽  
...  

Bone invasion is common in case of Squamous Cell Carcinomas (SCC) of the upper aero-digestive tract. Radiotherapy is required in addition to large surgical tumor removal. This treatment usually generates irreversible injuries on the reparation properties of the tissues, especially on bone. The quality of life of patients undergoing major surgery and radiotherapy in maxillary and mandible areas is reduced, but could be improved by bone reconstruction. The aim of this study was to evaluate the bone reconstruction possibilities by Macroporous Biphasic Calcium-Phosphate (MBCPÔ). The MBCP substitute was evaluated as granules and associated to autologous bone marrow (BM) graft in irradiated areas, in an inbreeding rodent model. Radiation sequels were created on inferior members of half of the rats. 3 weeks later, 3-mm osseous defects were created on each animal. The inbreeding model allows BM to be grafted without graft-versus-host reaction. Defects were filled either with MBCP alone, BM alone or a mixture of MBCP and BM. Six weeks after implantation, animals were sacrificed: bone repair and ceramic degradation were evaluated by qualitative and quantitative study. Results showed that bioceramics were well osteointegrated. Filling the defects with BM alone showed a significant increased of newly-formed bone formation but only after irradiation, whereas filling defects with MBCP alone increased new-bone formation only without previous irradiation. Associating MBCP to BM provided the best new-bone formation rates after irradiation. Degradation of the ceramic was the most important in case of BM grafting. This study demonstrated that BM added to MBCP constitute an appropriate material to be considered in case of bone defect occurring in irradiated tissue, and could be foreseen for use after bone removal for oncologic obligations.


Sign in / Sign up

Export Citation Format

Share Document