Osteogenic Differentiation of Marrow Mesenchymal Stem Cells (MSCs) on Ceramic Total Joints - Significance of Patient's Serum for Proliferation and Differentiation of MSCs -

2006 ◽  
Vol 309-311 ◽  
pp. 1383-1386
Author(s):  
Hajime Ohgushi ◽  
Hiroko Machida ◽  
Akira Oshima ◽  
Noriko Kotobuki ◽  
Motohiro Hirose ◽  
...  

After culture expansion of mesenchymal stem cells (MSCs) from a few milliliter of fresh patient’s bone marrow, we applied the MSCs on alumina ceramic ankle prosthesis and further cultured in an osteogenic medium for 2 weeks. After the culture, the MSCs differentiated into osteoblasts, which fabricated bone matrix on the surface of ceramic prosthesis. The expansion of MSCs followed by osteogenic differentiation was done using the commercially available medium with some chemicals and patient’s own serum. The MSCs well proliferated and differentiated into osteoblasts, even the MSCs were from old aged (more than 70 years old) patients. The tissue engineered ceramic prostheses were implanted into osteoarthritic patients. Typical X-ray findings showed that radiodense areas began to appear around the cell-seeded areas on the prosthesis about 2 to 3 months after the operation. These findings confirmed the importance of tissue engineering approach for early bone fixation and the approach can be done using small number of bone marrow cells and patient’s own serum without adding animal-derived products.

2014 ◽  
Vol 2 (23) ◽  
pp. 3609-3617 ◽  
Author(s):  
Haifeng Zeng ◽  
Xiyu Li ◽  
Fang Xie ◽  
Li Teng ◽  
Haifeng Chen

A novel approach for labelling and tracking BMSCs in bone tissue engineering by using dextran-coated fluorapatite nanorods doped with lanthanides.


2022 ◽  
Vol 12 (4) ◽  
pp. 794-799
Author(s):  
Le Chang ◽  
Wei Duan ◽  
Chuang Wang ◽  
Jian Zhang

This study was to determine whether microRNA (miRNA)-126 regulates osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Rat BMSCs were extracted and stimulated for osteogenic differentiation. Functional experiments were conducted to assess miR-126’s impact on BMSCs differentiation. Western blot and RT-qPCR determined miR-126 expression. ALP activity detection and alizarin red staining detection were also performed. After osteogenic differentiation of BMSCs, miR-126 expression was gradually decreased over time. Overexpression of miR-26 decreased ALP activity, Notch signaling activity as well as declined Runx2 expression and calcium Salt nodules after treatment. Importantly, we found that Smad4 serves as a target of miR-126 while upregulation of the miRNA was accompanied with the decreased Smad4 protein expression without affecting the Smad4 mRNA level. In conclusion, miR-126 restrains osteogenic differentiation through inhibition of SMAD4 signaling, providing a novel insight into the mechanism.


Sign in / Sign up

Export Citation Format

Share Document