Densification Behavior of Calcium Phosphates on Spark Plasma Sintering

2006 ◽  
Vol 309-311 ◽  
pp. 171-174 ◽  
Author(s):  
Daisuke Kawagoe ◽  
Yoshihiro Koga ◽  
Noriko Kotobuki ◽  
Hajime Ohgushi ◽  
Emile Hideki Ishida ◽  
...  

Ceramics of hydroxyapatite (Ca10(PO4)6(OH)2: HA) and β-tricalcium phosphate (β-Ca3(PO4)2: β-TCP), were prepared by spark plasma sintering (SPS) at the temperatures from 800 °C to 1000 °C for 10 min with a heating rate of 25 °C·min-1. The HA ceramics prepared at 900 °C and 1000 °C showed transparency. On the other hands, transparent β-TCP ceramics was obtained by SPS at 1000 °C. In analysis of the densification behavior during sintering of HA and β-TCP by SPS, dominant sintering mechanism was plastic flow in the early stage of densification. Transparent ceramics should be the most suitable materilas to investigate the interface between human cells and ceramics.

Author(s):  
Daisuke Kawagoe ◽  
Yoshihiro Koga ◽  
Noriko Kotobuki ◽  
Hajime Ohgushi ◽  
Emile Hideki Ishida ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Kirill V. Kuskov ◽  
Mohammad Abedi ◽  
Dmitry O. Moskovskikh ◽  
Illia Serhiienko ◽  
Alexander S. Mukasyan

Spark plasma sintering (SPS) is widely used for the consolidation of different materials. Copper-based pseudo alloys have found a variety of applications including as electrodes in vacuum interrupters of high-voltage electric circuits. How does the kinetics of SPS consolidation for such alloys depend on the heating rate? Do SPS kinetics depend on the microstructure of the media to be sintered? These questions were addressed by the investigation of SPS kinetics in the heating rate range of 0.1 to 50 K/s. The latter conditions were achieved through flash spark plasma sintering (FSPS). We also compared the sintering kinetics for the conventional copper–chromium mixture and for the mechanically induced copper/chromium nanostructured particles. It was shown that, under FSPS conditions, the observed maximum consolidation rates were 20–30 times higher than that for conventional SPS with a heating rate of 100 K/min. Under the investigated conditions, the sintering rate for mechanically induced composite Cu/Cr particles was 2–4 times higher compared to the conventional Cu + Cr mixtures. The apparent sintering activation energy for the Cu/Cr powder was twice less than that for Cu–Cr mixture. It was concluded that the FSPS of nanostructured powders is an efficient approach for the fabrication of pseudo-alloys.


Author(s):  
Akeem Yusuf Adesina ◽  
Muzafar Hussain ◽  
Abbas Saeed Hakeem ◽  
Abdul Samad Mohammed ◽  
Muhammad Ali Ehsan ◽  
...  

Author(s):  
Yingchun Shan ◽  
Xialu Wei ◽  
Xiannian Sun ◽  
Elisa Torresani ◽  
Eugene A. Olevsky ◽  
...  

JOM ◽  
2016 ◽  
Vol 68 (4) ◽  
pp. 1134-1142 ◽  
Author(s):  
Edgar B. Montufar ◽  
Miroslava Horynová ◽  
Mariano Casas-Luna ◽  
Sebastián Diaz-de-la-Torre ◽  
Ladislav Celko ◽  
...  

2004 ◽  
Vol 20 (9) ◽  
pp. 1097-1099 ◽  
Author(s):  
Z.Y. Fu ◽  
J.F. Liu ◽  
H. Wang ◽  
D.H. He ◽  
Q.J. Zhang

2005 ◽  
Vol 287 ◽  
pp. 335-339 ◽  
Author(s):  
Kyeong Sik Cho ◽  
Kwang Soon Lee

Rapid densification of the SiC-10, 20, 30, 40wt% TiC powder with Al, B and C additives was carried out by spark plasma sintering (SPS). In the present SPS process, the heating rate and applied pressure were kept at 100°C/min and at 40 MPa, while the sintering temperature varied from 1600-1800°C in an argon atmosphere. The full density of SiC-TiC composites was achieved at a temperature above 1800°C by spark plasma sintering. The 3C phase of SiC in the composites was transformed to 6H and 4H by increasing the process temperature and the TiC content. By tailoring the microstructure of the spark-plasma-sintered SiC-TiC composites, their toughness could be maintained without a notable reduction in strength. The strength of 720 MPa and the fracture toughness of 6.3 MPa·m1/2 were obtained in the SiC-40wt% TiC composite prepared at 1800°C for 20 min.


2016 ◽  
Vol 258 ◽  
pp. 333-336
Author(s):  
Miroslava Horynová ◽  
Mariano Casas Luna ◽  
Edgar Benjamin Montúfar Jimenéz ◽  
Sebastián Díaz de la Torre ◽  
Ladislav Čelko ◽  
...  

The usage of iron alloys for bone fractures treatment has been limited due to its high density and elastic modulus, as compared to bone. In contrast, the use of tricalcium phosphate (TCP), a ceramic that promotes bone healing, is mostly limited by its brittle nature. In the present work the fracture mechanism of a novel iron-TCP interpenetrated composite fabricated by spark plasma sintering was studied. Specimens were subjected to a diametral tensile-strength-test. The work of fracture was determined by indirect tensile loading conditions using the diametral tensile strength test. The results revealed that iron has a clear toughening effect on the microstructure of tricalcium phosphate specimens consolidated by spark plasma sintering. This is a promising result to overcome the limited usage of tricalcium phosphate to treat only non-load bearing bone defects.


Sign in / Sign up

Export Citation Format

Share Document