Preparation and In Vitro Releasing of Salmon Calcitonin Carried Porous Injectable Calcium Phosphate Bone Cement

2006 ◽  
Vol 309-311 ◽  
pp. 865-868
Author(s):  
Dong Xiao Li ◽  
Q. Yao ◽  
Hong Song Fan ◽  
Ji Yong Chen ◽  
Yu Mei Xiao ◽  
...  

Calcium phosphate cement (CPC) has many advantages and is frequently used as a carrier of antibiotic and bone growth factors. Salmon calcitonin(S-CT) is effective in treating osteoporosis. Due to its potential of promoting bone cell proliferation, S-CT was combined with injectable CPC to accelerate the restoring of the bone defect induced by osteoporosis and the composite can be used in minimal invasive surgery. Uniform design was used to optimize the prescription, and the effects of pore-maker and S-CT on the characters of CPC were studied. The in vitro releasing of S-CT from the optimum CPC in deionized water, SBF and rabbit serum was studied with HPLC, respectively. The results showed that the contents of HA and citric acid-NaHCO3 affect the physical characters of CPC sharply, but S-CT has little effect on it. The releasing of S-CT in three different medium follow Hugichi equation, but the speed is slower in rabbit serum than in deionized water and SBF. S-CT carried porous injectable CPC composite possesses the basic performance for clinical needs, and it is promising to be used in osteoporosis induced bone defect and accelerate bone repair.

2011 ◽  
Vol 493-494 ◽  
pp. 209-214 ◽  
Author(s):  
Nader Nezafati ◽  
F. Moztarzadeh ◽  
Masoud Mozafari

Basic drawbacks of calcium phosphate cements (CPCs) are the brittleness and low strength behavior which prohibit their use in many stress-bearing locations, unsupported defects, or reconstruction of thin bones. Recently, to solve these problems, researchers investigated the incorporation of fibers into CPCs to improve their strength. In the present study, various amounts of a highly bioactive glass fiber were incorporated into calcium phosphate bone cement. The obtained results showed that the compressive strength of the set cements without any fibers optimally increased by further addition of the fiber phase. Also, both the work-of-fracture and elastic modulus of the cement were considerably increased after applying the fibers in the cement composition. Herein, with the aim of using the reinforced-CPC as appropriate bone filler, the prepared sample was evaluated in vitro using simulated body fluid (SBF) and osteoblast cells. The samples showed significant enhancement in bioactivity within few days of immersion in SBF solution. Also, in vitro experiments with osteoblast cells indicated an appropriate penetration of the cells, and also the continuous increase in cell aggregation on the samples during the incubation time demonstrated the ability of the reinforced-CPC to support cell growth. Therefore, we concluded that this filler and strong reinforced-CPC may be beneficial to be used as bone fillers in surgical sites that are not freely accessible by open surgery or when using minimally invasive techniques.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.


2013 ◽  
Vol 24 (4) ◽  
pp. 1447-1450 ◽  
Author(s):  
Yoshiaki Sakamoto ◽  
Hiroko Ochiai ◽  
Ikuko Ohsugi ◽  
Yoshikazu Inoue ◽  
Yohko Yoshimura ◽  
...  

2020 ◽  
Vol 15 (5) ◽  
pp. 055038
Author(s):  
Sirirat T. Rattanachan ◽  
Nuan La-ong Srakaew ◽  
Paritat Thaitalay ◽  
Oranich Thongsri ◽  
Rawee Dangviriyakul ◽  
...  

2018 ◽  
Vol 80 (4) ◽  
Author(s):  
Mohammad Redzuan Abdul Hanan ◽  
Ahmad Kafrawi Nasution ◽  
Rafaqat Hussain ◽  
Syafiqah Saidin

Crab shells are waste product, rich with calcium compound. Calcium element is often used as a material for bone scaffold due to its bioactive and biodegradation properties. In this study, calcium phosphate (CaP) nanoparticles were synthesized from crab shells through a wet chemical route. The CaP nanoparticles were then sintered and mixed with poly(lactic-co-glycolic acid) (PLGA) to form a bone cement composite. The mixture was casted in a cylinder shape and it was characterized through ATR-FTIR, XRD, FESEM, contact angle and DSC analyses. The CaP pellet and the CaP/PLGA bone cement composite were then subjected to in vitro simulated body fluid (SBF) bioactivity test. The CaP/PLGA bone cement composite was found to have a composition of crystal CaP and PLGA with a tolerable glass transition state, suitable to be used in a physiological environment. The CaP nanoparticles were agglomerated on the 3D interconnected surface of PLGA. The hydrophobicity of the CaP was increased (66.94%) with the addition of PLGA as a binder matrix where this composite has induced the formation of apatite layer. This bioactive property is crucial in fabricating a bone substitute material as it can promotes cell penetration, attachment and proliferation..


Author(s):  
Samuel C. Uzoechi ◽  
Goddy C. Okoye ◽  
Kennedy O. Ejeta ◽  
Benjamin I. Nkem ◽  
Gideon I. Ndubuka

Calcium phosphate is a widely used material as coating for metallic implants. This research describes a biomimetic coating techniques based on deposition of calcium phosphate films on a Ti6Al4V plates that was used to study the effect of strontium additive on the behavior of hMSCs. In this study, strontium additive was homogenously deposited onto calcium phosphate films on a Ti6AlV plates by using a biomimetic techniques. Strontium affected composition and morphology of calcium phosphate deposited on a Ti6Al4V plates to a varying degree, according to concentration of solutions used. The effect of strontium additive on proliferation and differentiation of hMSCs depended on the solution and concentration tested. In general, all individual three coatings showed decreased hMSCs proliferation. Strontium additive demonstrated a significant increase in differentiation into osteogenic lineage when compared with the control and calcium phosphate films without strontium additive. However, no cytotoxic effect of strontium additive in the concentrations tested was detected. The Fourier transform infrared spectra showed that this new coating closely resembles bone mineral. The techniques illustrated in this study mimics bone mineral containing strontium additive, making it constructive for studying basic processes of in vitro bone formation. The results showed in this study can be used for changing bone graft substitutes by addition of strontium additive on implants in order to affect their performance in bone repair and regeneration. Also, the system can aid rapid bone formation around the implant, reducing therewith the patient’s recovery time after surgery.


Author(s):  
Soomin Lee ◽  
Zheng Li ◽  
Dehua Meng ◽  
Qinming Fei ◽  
Libo Jiang ◽  
...  

Abstract Vascularization is an important early indicator of osteogenesis involving biomaterials. Bone repair and new bone formation are associated with extensive neovascularization. Silicon-based biomaterials have attracted widespread attention due to their rapid vascularization. Although calcium phosphate cement (CPC) is a mature substitute for bone, the application of CPC is limited by its slow degradation and insufficient promotion of neovascularization. Calcium silicate (CS) has been shown to stimulate vascular endothelial proliferation. Thus, CS may be added to CPC (CPC–CS) to improve the biocompatibility and neovascularization of CPC. In the early phase of bone repair (the inflammatory phase), macrophages accumulate around the biomaterial and exert both anti- and pro-inflammatory effects. However, the effect of CPC–CS on macrophage polarization is not known, and it is not clear whether the effect on neovascularization is mediated through macrophage polarization. In the present study, we explored whether silicon-mediated macrophage polarization contributes to vascularization by evaluating the CPC–CS-mediated changes in the immuno-environment under different silicate ion contents both in vivo and in vitro. We found that the silicon released from CPC–CS can promote macrophage polarization into the M2 phenotype and rapid endothelial neovascularization during bone repair. Dramatic neovascularization and osteogenesis were observed in mouse calvarial bone defects implanted with CPC–CS containing 60% CS. These findings suggest that CPC–CS is a novel biomaterial that can modulate immune response, promote endothelial proliferation, and facilitate neovascularization and osteogenesis. Thus, CPC–CS shows potential as a bone substitute material.


2019 ◽  
Vol 8 (6) ◽  
pp. 266-274
Author(s):  
I. Palmer ◽  
S. A. Clarke ◽  
F. J Buchanan

Objectives Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019;8:266–274. DOI: 10.1302/2046-3758.86.BJR-2018-0224.R2.


Sign in / Sign up

Export Citation Format

Share Document