scholarly journals Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model

2019 ◽  
Vol 8 (6) ◽  
pp. 266-274
Author(s):  
I. Palmer ◽  
S. A. Clarke ◽  
F. J Buchanan

Objectives Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019;8:266–274. DOI: 10.1302/2046-3758.86.BJR-2018-0224.R2.

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.


Author(s):  
Godday Anebow Lulu ◽  
Arunkumar Karunanidhi ◽  
Loqman Mohamad Yusof ◽  
Yusuf Abba ◽  
Fazlin Mohd Fauzi ◽  
...  

2016 ◽  
Vol 721 ◽  
pp. 229-233 ◽  
Author(s):  
Sandris Petronis ◽  
Janis Locs ◽  
Vita Zalite ◽  
Mara Pilmane ◽  
Andrejs Skagers ◽  
...  

Calcium bone substitutes are successfully used for local recovery of osteoporotic bone and filling of bone defects. Previous studies revieled that biphasic calcium phosphate (BCP) show better bioactivity in compare to pure β-tricalcium phosphate or hydroxyapatite. Also increased porosity of material promotes better bone tissue response. Aim of this experiment was to evaluate immunohistologically response of osteoporotic bone of experimental animal to implantation of granules with hydroxyapatite/β-tricalcium phosphate (HAp/β-TCP) ratio of 90/10. Calcium phosphate (CaP) was synthesized by aqueous precipitation technique from calcium hydroxide and phosphoric acid. Bioceramic granules in size range from 1.0 to 1.4 mm were prepared with nanopore sizes around 200 nm. We used nine female rabbits with induced osteoporosis in this experiment. Six animals in study group underwent implantation of BCP in hip bone defect and three animals in control group left without BCP implantation. After 6 months animals were euthanized, bone samples collected and proceeded for detection of bone activity and repair markers: osteocalcin (OC), osteopontin (OP) and osteoprotegerin (OPG). Controls showed the presence of experimental bone osteoporosis. In experimental group bone showed partially resorbed bioceramic granules and in some samples new bone formation near the granuli was observed. Increase of OC and OPG up to twice as to compare to control group were detected as well. Implantation of BCP granules in osteoporotic rabbit bone increases expression of OC and OPG indicating the activation of osteoblastogenesis and bone mineralization in vivo.


2000 ◽  
Vol 113 (10) ◽  
pp. 1671-1676 ◽  
Author(s):  
F. Hofmann ◽  
A. Ammendola ◽  
J. Schlossmann

Over the past few years, a wealth of biochemical and functional data has been gathered on mammalian cGMP-dependent protein kinases (cGKs). In mammals, three different kinases are encoded by two genes. Mutant and chimeric cGMP kinase proteins generated by molecular biology techniques have yielded important biochemical knowledge, such as the function of the N-terminal domains of cGKI and cGKII, the identity of the cGMP-binding sites of cGKI, the substrate specificity of the enzymes and structural details of the catalytic center. Genetic approaches have proved to be especially useful for the analysis of the biological function of cGKs. Recently, some of the in vivo targets and mechanisms leading to smooth muscle relaxation have been identified. In vivo targets are the myosin-binding subunit of myosin phosphatase (PP1M), a member of the protein phosphatase 1, the calcium-activated maxi K(+) channel and a new protein named IRAG that forms a complex with the inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) receptor and cGKI. Phosphorylation of PP1M by cGKI(alpha) activates myosin phosphatase, whereas phosphorylation of IRAG by cGKI(beta) decreases Ins(1,4, 5)P(3)-induced calcium release. cGKII regulates in vivo intestinal fluid secretion by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR), bone growth and renal renin secretion by phosphorylation of unknown proteins.


Author(s):  
Soomin Lee ◽  
Zheng Li ◽  
Dehua Meng ◽  
Qinming Fei ◽  
Libo Jiang ◽  
...  

Abstract Vascularization is an important early indicator of osteogenesis involving biomaterials. Bone repair and new bone formation are associated with extensive neovascularization. Silicon-based biomaterials have attracted widespread attention due to their rapid vascularization. Although calcium phosphate cement (CPC) is a mature substitute for bone, the application of CPC is limited by its slow degradation and insufficient promotion of neovascularization. Calcium silicate (CS) has been shown to stimulate vascular endothelial proliferation. Thus, CS may be added to CPC (CPC–CS) to improve the biocompatibility and neovascularization of CPC. In the early phase of bone repair (the inflammatory phase), macrophages accumulate around the biomaterial and exert both anti- and pro-inflammatory effects. However, the effect of CPC–CS on macrophage polarization is not known, and it is not clear whether the effect on neovascularization is mediated through macrophage polarization. In the present study, we explored whether silicon-mediated macrophage polarization contributes to vascularization by evaluating the CPC–CS-mediated changes in the immuno-environment under different silicate ion contents both in vivo and in vitro. We found that the silicon released from CPC–CS can promote macrophage polarization into the M2 phenotype and rapid endothelial neovascularization during bone repair. Dramatic neovascularization and osteogenesis were observed in mouse calvarial bone defects implanted with CPC–CS containing 60% CS. These findings suggest that CPC–CS is a novel biomaterial that can modulate immune response, promote endothelial proliferation, and facilitate neovascularization and osteogenesis. Thus, CPC–CS shows potential as a bone substitute material.


2001 ◽  
Vol 10 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Gregory A. Helm ◽  
Hayan Dayoub ◽  
John A. Jane

In the prototypical method for inducing spinal fusion, autologous bone graft is harvested from the iliac crest or local bone removed during the spinal decompression. Although autologous bone remains the “gold standard” for stimulating bone repair and regeneration, modern molecular biology and bioengineering techniques have produced unique materials that have potent osteogenic activities. Recombinant human osteogenic growth factors, such as bone morphogenetic proteins, transforming growth factor–β, and platelet-derived growth factor are now produced in highly concentrated and pure forms and have been shown to be extremely potent bone-inducing agents when delivered in vivo in rats, dogs, primates, and humans. The delivery of pluripotent mesenchymal stem cells (MSCs) to regions requiring bone formation is also compelling, and it has been shown to be successful in inducing osteogenesis in numerous pre-clinical studies in rats and dogs. Finally, the identification of biological and nonbiological scaffolding materials is a crucial component of future bone graft substitutes, not only as a delivery vehicle for bone growth factors and MSCs but also as an osteoconductive matrix to stimulate bone deposition directly. In this paper, the currently available bone graft substitutes will be reviewed and the authors will discuss the novel therapeutic approaches that are currently being developed for use in the clinical setting.


Author(s):  
Rema A. Oliver ◽  
Vedran Lovric ◽  
Chris Christou ◽  
William R. Walsh

Abstract The study aimed to evaluate the comparative osteoconductivity of three commercially available bone void fillers containing gentamicin with respect to new bone, growth, host tissue response and resorption of the implant material. Defects were created in the cancellous bone of the distal femur and proximal tibia of 12-skeletally mature sheep and filled with three commercially available bone void fillers containing gentamicin (Stimulan-G, Cerament-G, Herafill-G). Peripheral blood was taken pre-operatively and at the time of implantation, as well as at intermittent timepoints following surgery to determine systemic gentamicin levels (5-,15- and 30- minutes, 1, 2, 3, 6, 12, 24, 48- and 72-hours, 3-, 6- and 12-weeks). Decalcified, embedded samples were stained with haematoxylin and eosin (H&E) and used to assess the host tissue response and the formation of new bone in the presence of test implant materials. No adverse reactions were noted at harvest at any time points for any cancellous implantation sites with the various implant materials. Comparative microCT analysis of the Stimulan-G, Cerament-G and Herafill-G test materials revealed a similar increase in bone surface area and volume between animals implanted with Stimulan-G or Cerament-G test materials. Animals implanted with Herafill-G test materials demonstrated the lowest increases in bone volume and surface area of the test materials tested, at levels similar to the negative control sites. By 12-weeks, Stimulan-G defects were completely closed with mature bone and bone marrow whilst the Cerament-G material was still present after 12 weeks by histological examination. In conclusion, this study demonstrated differences in the bone regenerative capacity of a range of bone void fillers in an in vivo setting.


2006 ◽  
Vol 20 (3) ◽  
pp. 253-266 ◽  
Author(s):  
A. G. Dias ◽  
M. A. Lopes ◽  
J. D. Santos ◽  
A. Afonso ◽  
K. Tsuru ◽  
...  

2006 ◽  
Vol 309-311 ◽  
pp. 607-610
Author(s):  
Sander C.G. Leeuwenburgh ◽  
Joop G.C. Wolke ◽  
M.C. Siebers ◽  
J. Schoonman ◽  
John A. Jansen

The dissolution and precipitation behavior of various porous, ESD-derived calcium phosphate coatings was investigated a) in vitro after soaking in Simulated Body Fluid (SBF) for several time periods (2, 4, 8, and 12 weeks), and b) in vivo after subcutaneous implantation in the back of goats for identical time periods. At the end of these studies, the physicochemical properties of the coated substrates were characterized by means of Scanning Electron Microscopy (SEM), XRay Diffraction (XRD), Fourier-Transform InfraRed spectroscopy (FTIR) and Energy Dispersive Spectroscopy (EDS). Moreover, part of the implants was prepared for light microscopical evaluation of the tissue response. In vitro, a highly bioactive behavior was observed for all ESD-coatings, characterized by the deposition of a thick and homogeneous carbonate hydroxyapatite precipitation layer on top of the porous coatings. Regarding the in vivo study, no adverse tissue reactions (toxic effects/inflammatory cells) were observed using light microscopy, and all coatings became surrounded by a thin, dense fibrous tissue capsule after implantation. The ESD-coatings degraded gradually at a dissolution rate depending on the specific chemical phase, thereby enabling synthesis of CaP coatings with a tailored degradation rate.


2011 ◽  
Vol 493-494 ◽  
pp. 808-812
Author(s):  
K. Ito ◽  
Masaru Murata ◽  
J. Hino ◽  
Junichi Tazaki ◽  
T. Akazawa ◽  
...  

Body fluid permeability and blood compatibility of biomaterials are especially critical properties for regenerative bone therapy [1, 2]. To have a role in bone repair, biomaterials must have the adsorptive performance of various bone growth factors. The bone-inductive property of rabbit dentin was discovered in 1967 [3]. In our previous study, we have been researching the autograft of human demineralized dentin matrices (DDM) as a clinical study [4]. DDM is an acid-insoluble collagenous material. On the other hand, hydroxyapatite (HAp) is a mineralized material. Commercially available HAp block (APACERAM-AX®,85%-porosity with micropore) has been used as the artificial biomaterial in bone therapy [5]. Bone morphogenetic proteins (BMPs) are the strong hard tissue-inducing factors [6]. In this study, we investigated the existence of BMP-2 and -7, among proteins adsorbed to DDM and HAp, using immunoblottong analyses. The DDM granules and HAp blocks (64mm3) were implanted subcutaneously in 8-week-old Wistar rats, and sacrificed at 2 days after the implantation. Explanted DDM and HAp were homogenized by the ultrasonic procedure in phosphate-buffered saline (PBS) and the adsorbed proteins were separated on a 5-20% sodium dodecyl sulphate (SDS) polyacrylamide gradient gel by electrophoresis. For Western blotting, proteins in the gel were transferred to a polyvinylidene difluoride membrane and detected by anti-BMP-2 monoclonal antibody and anti-BMP-7 monoclonal antibody. BMP-2 and BMP-7 were detected as a major band at 50 kDa among proteins collected from the in vivo implanted DDM and HAp. BMP-2 was detected the second major band at 125 kDa in HAp and both BMP-2 and BMP-7 were detected the some minor bands in DDM and HAp. The bands of BMP-2 were stronger than those of BMP-7 in all. The DDM and HAp adsorbed BMP-2 and BMP-7. These results indicate that DDM is a useful bone substitute as much as HAp, adsorbed to the bone-inducing factors, in the bone engineering field.


Sign in / Sign up

Export Citation Format

Share Document