Microstructure and Properties of Spark Plasma Sintering AlN/BN Ceramics

2006 ◽  
Vol 313 ◽  
pp. 105-108 ◽  
Author(s):  
Lian Meng Zhang ◽  
Mei Juan Li ◽  
Qiang Shen ◽  
T. Li ◽  
M.Q. Yu

Aluminum nitride-boron nitride (AlN/BN) composite ceramics were prepared by spark plasma sintering (SPS). The sintering behaviors of AlN/BN composites with 5~15% volume fraction of BN were studied. The influences of BN content, as well as the sintering temperature on the density, microstructure, mechanical strength, thermal conductivity and machinability of the composites were also investigated. The results showed that the full densification of AlN/BN composite ceramics could be realized by SPS technique at the temperature no higher than 1800°C for 3 minutes. The thermal conductivity of AlN/BN composites is in the range of 66~79W/mK, and AlN/BN composites can be cut or drilled by carbides or even steel tools when BN content is 15% volume fraction. The mechanical strength of AlN/BN composites is about 330MPa and is not remarkably affected by the addition of BN. The improvement of mechanical properties of AlN/BN composite ceramics is due to the fine and homogenous microstructure developed in the SPS process.

2012 ◽  
Vol 512-515 ◽  
pp. 739-743 ◽  
Author(s):  
S.Z. Zhu ◽  
D.L. Gong ◽  
Z. Fang ◽  
Q. Xu

For high thermal conductivity and high electrical conductivity, copper is a good electrode material. The wearing resistance and spark resistance of Cu can be improved with the addition of ZrB2. ZrB2-Cu composites with high Cu volume fraction was successfully prepared by spark plasma sintering (SPS) process in this paper. The microstructure and properties of the sintered samples were characterized. The effect of the sintering temperature and the ZrB2 content in composites on the relative density and properties of the composites were investigated. The results show that the relative density and mechanical properties increase with the sintering temperature increasing. The optimum sintering temperature is 900 °C for 10wt.% ZrB2-Cu, 1000 °C for 20wt.% ZrB2-Cu and 1050 °C for 30wt.% ZrB2-Cu. With the ZrB2 content in composites increasing from 10wt.% to 30 wt.%, the electrical resistivity increases from 2.25×10-6 Ω.cm to 8.82×10-6 Ω.cm, the flexural strength decreases from to 539.1 MPa to 482.2 MPa and the fracture toughness decreases from to 15 MPa.m 1/2 to 9 MPa.m 1/2. The hardness (HV) of ZrB2-Cu composites is significantly enhanced by the ZrB2 particulate reinforcement, increasing from 1410 MPa for 10 wt.% ZrB2 to 2480 MPa for 30wt.% ZrB2.


2018 ◽  
Vol 7 (3.32) ◽  
pp. 76
Author(s):  
Fei Gao ◽  
Yongbum Choi ◽  
Yosuke Dobashi ◽  
Kazuhiro Matsugi

In order to obtain the high performance materials with high thermal conductivity, high electrical conductivity, low thermal expansion, good mechanical properties and low density, Graphene has higher thermal conductivity comparison with other ceramic particle. In this study, graphene dispersed aluminum (Al) composites was developed by spark plasma sintering. Volume fraction of graphene were 10, 20 and 30 vol.%. Fabrication conditions of graphene dispersed aluminum (Al) composites were temperature of 813K and applied pressure of 80 MPa. As composite properties are affected by the dispersibility and volume fraction of the graphene particles, the relationship among the dispersibility of dispersant and the thermal conductivity and mechanical properties was investigated.  


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Shi Tian ◽  
Zelin Liao ◽  
Wenchao Guo ◽  
Qianglong He ◽  
Heng Wang ◽  
...  

TiB2-BN composite ceramics combine excellent electrical conductivity, thermal shock resistance, high-temperature resistance, corrosion resistance, and easy processing of TiB2 and BN. However, in practical applications, their high-temperature oxidation resistance is poor and the resistivity distribution is uneven and changes substantially with temperature. A TiB2-BN-SiC composite ceramic with stable and controllable resistivity was prepared by introducing SiC into the TiB2-BN composite ceramics. In this work, spark plasma sintering (SPS) technology was used to prepare TiB2-BN-SiC composite ceramics with various TiB2-SiC ratios and sintering temperatures. The samples were tested by XRD, SEM, and thermal and mechanical analysis. The results show that as the volume ratio of TiB2-SiC was increased from 3:1 to 12:1, the resistivity of the sample decreased from 8053.3 to 4923.3 μΩ·cm, the thermal conductivity increased from 24.89 to 34.15 W/(m k), and the thermal expansion rate increased from 7.49 (10−6/K) to 10.81 (10−6/K). As the sintering temperature was increased from 1650 to 1950 °C, the density of the sample increased, the mechanical properties were slightly improved, and the resistivity, thermal expansion rate, and thermal conductivity changed substantially. The volume ratio and sintering temperature are the key factors that control the resistivity and thermal characteristics of TiB2-SiC-BN composite ceramics, and the in situ from liquid phases of FeB and FeO also promotes the sintering of the TiB2-BN-SiC ceramics.


2014 ◽  
Vol 602-603 ◽  
pp. 570-573
Author(s):  
Hai Long Liang ◽  
Chun Peng Wang ◽  
Yan Li Huo ◽  
Chuan Qi Hu ◽  
Xiao Ting Huang ◽  
...  

Highly dense AlN/CNT composite ceramics with 1-10% volume fractions of CNT were fabricated by spark plasma sintered (SPS) at 1400°C-1700°C. The results indicated that origination diameter of AlN had a great effect on microstructure and thermal conductivity. In details, for the system with AlN origination diameter of nanosized, the tubular structure of CNT has not been destructed, but when micro-sized AlN powder was adopted, the structure of CNT showed unstable at high temperature. Even though the degradation with incorporation of CNT into AlN, thermal conductivity of sintered AlN/CNT composites ceramics was evidently improved by adjusting content of additive Y2O3and the sintering process. Both the real part and imaginary part of the composites of Ka-Band (26.540.0 GHz) increase with the increase of CNT content, in which the increase of imaginary part is more than that of real part, resulting in an increase of loss factor. The AlN/ CNT thermal conductivity composites with appropriate CNT content and sintering temperature possess good dielectric dissipation and thermal conductivity.


2009 ◽  
Vol 631-632 ◽  
pp. 413-423 ◽  
Author(s):  
Shu Feng Li ◽  
Hiroshi Izui ◽  
Michiharu Okano ◽  
Wei Hua Zhang ◽  
Taku Watanabe

TZP-3Y20A/HA composites with addition of different volume fraction of hydroxyapatite (HA) were fabricated successfully using spark plasma sintering (SPS). The densification behavior and mechanical properties of composites are investigated as a function of sintering temperature and HA content respectively. The density of TZP-3Y20A composite increases steadily with temperature and a maximum value of 97.8% is obtained after sintering at 1400°C. Sintering the TZP-3Y20A/HA composites at 1400°C led to the decomposition of HA in the samples. Flexural strength, fracture toughness and Vickers hardness values increase with increasing sintering temperature, show decrease trend with increasing of HA content at the same temperature. They compared well with densities obtained at different sintering temperature. The maximum flexural strength, fracture toughness and Vickers hardness of 967.1 MPa, 5.27 MPam1/2 and 13.26 GPa were achieved for TZP-3Y20A composite respectively. Flexural strength, fracture toughness and Vickers hardness values of TZP-3Y20A/HA composite fell within the value range of dense HA and of TZP-3Y20A composite.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850022
Author(s):  
MAOYUAN LI ◽  
LIN LU ◽  
ZHEN DAI ◽  
YIQIANG HONG ◽  
WEIWEI CHEN ◽  
...  

Amorphous Al–Cu–Ti metal foams were prepared by spark plasma sintering (SPS) process with the diameter of 10[Formula: see text]mm. The SPS process was conducted at the pressure of 200 and 300[Formula: see text]MPa with the temperature of 653–723[Formula: see text]K, respectively. NaCl was used as the space-holder, forming almost separated pores with the porosity of 65 vol%. The microstructure and mechanical behavior of the amorphous Al–Cu–Ti metal foams were systematically investigated. The results show that the crystallinity increased at elevated temperatures. The effect of pressure and holding time on the crystallization was almost negligible. The intermetallic compounds, i.e. Al–Ti, Al–Cu and Al–Cu–Ti were identified from X-ray diffraction (XRD) patterns. It was found that weak adhesion and brittle intermetallic compounds reduced the mechanical properties, while lower volume fraction and smaller size of NaCl powders improved the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document