Preparation and Properties of ZrB2-Cu Composites by Spark Plasma Sintering

2012 ◽  
Vol 512-515 ◽  
pp. 739-743 ◽  
Author(s):  
S.Z. Zhu ◽  
D.L. Gong ◽  
Z. Fang ◽  
Q. Xu

For high thermal conductivity and high electrical conductivity, copper is a good electrode material. The wearing resistance and spark resistance of Cu can be improved with the addition of ZrB2. ZrB2-Cu composites with high Cu volume fraction was successfully prepared by spark plasma sintering (SPS) process in this paper. The microstructure and properties of the sintered samples were characterized. The effect of the sintering temperature and the ZrB2 content in composites on the relative density and properties of the composites were investigated. The results show that the relative density and mechanical properties increase with the sintering temperature increasing. The optimum sintering temperature is 900 °C for 10wt.% ZrB2-Cu, 1000 °C for 20wt.% ZrB2-Cu and 1050 °C for 30wt.% ZrB2-Cu. With the ZrB2 content in composites increasing from 10wt.% to 30 wt.%, the electrical resistivity increases from 2.25×10-6 Ω.cm to 8.82×10-6 Ω.cm, the flexural strength decreases from to 539.1 MPa to 482.2 MPa and the fracture toughness decreases from to 15 MPa.m 1/2 to 9 MPa.m 1/2. The hardness (HV) of ZrB2-Cu composites is significantly enhanced by the ZrB2 particulate reinforcement, increasing from 1410 MPa for 10 wt.% ZrB2 to 2480 MPa for 30wt.% ZrB2.

2006 ◽  
Vol 313 ◽  
pp. 105-108 ◽  
Author(s):  
Lian Meng Zhang ◽  
Mei Juan Li ◽  
Qiang Shen ◽  
T. Li ◽  
M.Q. Yu

Aluminum nitride-boron nitride (AlN/BN) composite ceramics were prepared by spark plasma sintering (SPS). The sintering behaviors of AlN/BN composites with 5~15% volume fraction of BN were studied. The influences of BN content, as well as the sintering temperature on the density, microstructure, mechanical strength, thermal conductivity and machinability of the composites were also investigated. The results showed that the full densification of AlN/BN composite ceramics could be realized by SPS technique at the temperature no higher than 1800°C for 3 minutes. The thermal conductivity of AlN/BN composites is in the range of 66~79W/mK, and AlN/BN composites can be cut or drilled by carbides or even steel tools when BN content is 15% volume fraction. The mechanical strength of AlN/BN composites is about 330MPa and is not remarkably affected by the addition of BN. The improvement of mechanical properties of AlN/BN composite ceramics is due to the fine and homogenous microstructure developed in the SPS process.


2018 ◽  
Vol 7 (3.32) ◽  
pp. 76
Author(s):  
Fei Gao ◽  
Yongbum Choi ◽  
Yosuke Dobashi ◽  
Kazuhiro Matsugi

In order to obtain the high performance materials with high thermal conductivity, high electrical conductivity, low thermal expansion, good mechanical properties and low density, Graphene has higher thermal conductivity comparison with other ceramic particle. In this study, graphene dispersed aluminum (Al) composites was developed by spark plasma sintering. Volume fraction of graphene were 10, 20 and 30 vol.%. Fabrication conditions of graphene dispersed aluminum (Al) composites were temperature of 813K and applied pressure of 80 MPa. As composite properties are affected by the dispersibility and volume fraction of the graphene particles, the relationship among the dispersibility of dispersant and the thermal conductivity and mechanical properties was investigated.  


2015 ◽  
Vol 782 ◽  
pp. 107-112
Author(s):  
Li Fen Wang ◽  
Zhao Hui Zhang ◽  
Tie Jian Su ◽  
Fu Chi Wang

TiB-Ti/Ti-6Al-4V composites were fabricated by spark plasma sintering (SPS) technique under a pressure of 50MPa, with sintering temperature of 1300 °C and heating rate of 100 °C /min. The effect of the TiB content in TiB-Ti composite layer on microstructures and mechanical properties of the TiB-Ti/Ti-6Al-4V composites were investigated. The results indicate that as an advanced welding method, SPS technique provided the excellent welding combination of TiB-Ti and Ti-6Al-4V. The relatively excellent mechanical properties of the joints, including the relative density of 98.6%, micro-hardness of 10.2GPa, fracture strength of 177MPa were achieved as TiB content in TiB-Ti composite layer reaches 50%.


2009 ◽  
Vol 631-632 ◽  
pp. 413-423 ◽  
Author(s):  
Shu Feng Li ◽  
Hiroshi Izui ◽  
Michiharu Okano ◽  
Wei Hua Zhang ◽  
Taku Watanabe

TZP-3Y20A/HA composites with addition of different volume fraction of hydroxyapatite (HA) were fabricated successfully using spark plasma sintering (SPS). The densification behavior and mechanical properties of composites are investigated as a function of sintering temperature and HA content respectively. The density of TZP-3Y20A composite increases steadily with temperature and a maximum value of 97.8% is obtained after sintering at 1400°C. Sintering the TZP-3Y20A/HA composites at 1400°C led to the decomposition of HA in the samples. Flexural strength, fracture toughness and Vickers hardness values increase with increasing sintering temperature, show decrease trend with increasing of HA content at the same temperature. They compared well with densities obtained at different sintering temperature. The maximum flexural strength, fracture toughness and Vickers hardness of 967.1 MPa, 5.27 MPam1/2 and 13.26 GPa were achieved for TZP-3Y20A composite respectively. Flexural strength, fracture toughness and Vickers hardness values of TZP-3Y20A/HA composite fell within the value range of dense HA and of TZP-3Y20A composite.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850022
Author(s):  
MAOYUAN LI ◽  
LIN LU ◽  
ZHEN DAI ◽  
YIQIANG HONG ◽  
WEIWEI CHEN ◽  
...  

Amorphous Al–Cu–Ti metal foams were prepared by spark plasma sintering (SPS) process with the diameter of 10[Formula: see text]mm. The SPS process was conducted at the pressure of 200 and 300[Formula: see text]MPa with the temperature of 653–723[Formula: see text]K, respectively. NaCl was used as the space-holder, forming almost separated pores with the porosity of 65 vol%. The microstructure and mechanical behavior of the amorphous Al–Cu–Ti metal foams were systematically investigated. The results show that the crystallinity increased at elevated temperatures. The effect of pressure and holding time on the crystallization was almost negligible. The intermetallic compounds, i.e. Al–Ti, Al–Cu and Al–Cu–Ti were identified from X-ray diffraction (XRD) patterns. It was found that weak adhesion and brittle intermetallic compounds reduced the mechanical properties, while lower volume fraction and smaller size of NaCl powders improved the mechanical properties.


2012 ◽  
Vol 706-709 ◽  
pp. 217-221 ◽  
Author(s):  
Hiroshi Izui ◽  
Genki Kikuchi

Titanium alloys were produced by blended elemental powder metallurgy (P/M) method. We focused on the effect of alloying elements (Fe, Mo, and Al) on the consolidation and mechanical properties of Ti compacts prepared by spark plasma sintering. The effects of amount of alloying elements and sintering temperature on the relative density and tensile properties of Ti compacts were investigated. The addition of β-stabilizing elements (Fe and Mo) significantly improved the densification of Ti compacts, where the relative density ratio of Ti-5 wt% Mo specimen became higher than 99.9 %, and Ti-5 wt% Fe specimen higher than 99.0 %. On the other hand, the addition of Al as α-stabilizing element led to improve the relative density of Ti-5 wt% Al compact with higher than 99.9 %. The tensile property for sintered Ti-5 wt% Mo compact had the highest elongation of 16 %. It will be discussed the microstructures and tensile property of the compacts.


Sign in / Sign up

Export Citation Format

Share Document