Cutting Temperature in High Speed Milling of a Near Alpha Titanium Alloy

2006 ◽  
Vol 315-316 ◽  
pp. 145-149 ◽  
Author(s):  
Guo Sheng Geng ◽  
Jiu Hua Xu ◽  
Yu Can Fu ◽  
Y.F. Ge ◽  
C. Su

Cutting temperature has direct effects on tool wear and tool life, as well as machining accuracy and machining quality. Titanium alloys, however, are generally machined at lower cutting speeds with cemented carbide tools due to its low thermal conductivity and high chemical reactivity with cutting tool materials. This paper deals with cutting temperature in high-speed milling of a near alpha titanium alloy. The measuring principle of cutting temperature by the workpiece-constantan thermocouple method was illustrated and the physical meaning of the electromotive force (EMF) signals was described in the paper. The effects of cutting parameters and wear status on cutting temperature were studied, and the temperature distribution along the cutting edge was investigated.

2021 ◽  
Author(s):  
Qimeng Liu ◽  
Jinkai Xu ◽  
Huadong Yu

Abstract Large-scale slender beam structures with weak stiffness are widely used in the aviation field. There will be a great deformation problem in machining because the overall stiffness of slender beam parts is lower. Firstly, the cutting mechanism and stability theory of the Ti6Al4V material are analyzed, and then the auxiliary support is carried out according to the machining characteristics of the slender beam structure. The feasibility of the deformation suppression measures for the slender beam is verified by experiments. The experimental analysis shows that on the basis of fulcrum auxiliary support, the filling of paraffin melt material is capable of increasing the damping of the whole system, improving the overall stiffness of the machining system, and inhibiting the chatter effect of machining. This method is effective to greatly improve the accuracy and efficiency during machining of slender beam parts. On the premise of the method of processing support with the combination of fulcrum and paraffin, if the tool wear is effectively controlled, the high precision machining of large-scale slender beams can be realized effectively, and the machining deformation of slender beams can be reduced. Although high speed milling has excellent machining effect on the machining accuracy of titanium alloy materials, severe tool wear is observed during high-speed milling of titanium alloy materials. Therefore, high-speed milling of titanium alloy slender beam is suitable to be carried out in the finishing process, which can effectively control tool wear and improve the machining accuracy of parts. Finally, the process verification of typical weak stiffness slender beam skeleton parts is carried out. Through the theoretical and technical support of the experimental scheme, the machining of large-scale slender beam structure parts with weak stiffness is realized.


Author(s):  
J. Ma ◽  
Shuting Lei ◽  
Huaqi Lu

Titanium alloys are widely used in aerospace industry owing to excellent mechanical properties. While because of high chemical reactivity and low thermal conductivity, titanium alloys are classified as hard-to-cut materials. In this paper, Finite Element Method (FEM) is employed to conduct numerical investigation in the effects of milling process parameters (milling speeds, feed per tooth, and axial depth of cut) on three-dimensional (3D) high speed milling of Titanium alloy (Ti-6Al-4V). The tool material used is Carbide and Johnson-Cook plastic model is employed to model the workpiece due to its capability of modeling large strains, high strain rates, and temperature dependent visco-plasticity. Different milling speeds, feed per tooth, and axial depth of cut are used to explore the effects of the milling process parameters on the cutting temperature, cutting forces, and power required for machining. This model provides fundamental understanding of cutting mechanics of the 3D high speed milling of Titanium alloy (Ti-6Al-4V).


2009 ◽  
Vol 626-627 ◽  
pp. 189-194
Author(s):  
P. Liu ◽  
Jiu Hua Xu ◽  
Yu Can Fu

TA15 (Ti-6.5Al-2Zr-1Mo-1V) is a close alpha titanium alloy strengthened by solid solution with Al and other component. A series of experiments were carried out on normal and high speed milling of TA15. The recommended tools for many years had been the uncoated tungsten carbide grade K. In this work, the tool life of coated carbide tools used in high speed milling of forging and cast titanium alloy was studied. Additionally, the wear mechanism of cutting tools was also discussed. Finally, surface integrity, including surface roughness, metallograph and work hardening, were examined and analyzed. The result shows that the surface quality of forging and cast machined by carbide cutter is similar, but the tool life of carbide in high speed milling of forging TA15 is longer than that in high speed milling of cast TA15.


2006 ◽  
Vol 532-533 ◽  
pp. 644-647
Author(s):  
Yi Ping Zhang ◽  
Jiu Hua Xu ◽  
Guo Sheng Geng

Ti-6.5Al-2Zr-1Mo-1V is a near alpha titanium alloy strengthened by solid solution with Al and other components. In this study, a series of experiments on tool wear and surface integrity in high speed milling (HSM) of this alloy were carried out. The tool lives under different cutting speeds were studied and the corresponding empirical equation of tool life was derived. Additionally, the wear mechanism of cutting tools was also discussed. Finally, surface integrity, including surface roughness, metallograph, work hardening and residual stresses, were examined and analysed. The result shows that good surface quality of workpiece could be obtained in HSM of the alloy.


2008 ◽  
Vol 392-394 ◽  
pp. 719-723 ◽  
Author(s):  
W.J. Bai ◽  
Ying Lin Ke ◽  
H.B. Wu ◽  
Hui Yue Dong

A semi-artificial thermocouple device is developed to explore the dynamic cutting temperature variation rules in high-speed milling of Al7050-T7451 aluminum alloy. Both the aluminum-constantan thermocouple calibration diagram and cutting temperature curves are obtained. The cutting temperature empirical formula is constructed by means of orthogonal experimental design and multivariate linear regression analyses. It shows a reasonable good match between the theoretical predicted values and the measured temperatures. This allows for the optimization of cutting parameters and the exploration of machining deformation induced by the cutting heat in high-speed milling of aerospace aluminum monolithic constructions.


2012 ◽  
Vol 443-444 ◽  
pp. 133-137 ◽  
Author(s):  
Yu Li ◽  
Wei Jun Tian ◽  
Zhen Chao Yang ◽  
Chang Feng Yao ◽  
Jun Xue Ren

The paper is concerned with the effect of cutting parameters on surface microstructure of titanium alloy TC17 in high speed milling with the carbide cutting tools by single factor experiment. It will be provided experimental evidence for optimization cutting parameters and surface quality control of titanium alloy parts in high-speed cutting process. It is observing microstructure with Germany's Leica DMI 5000M inverted metallurgical microscope. The results show that in the range of experimental parameters, the effect of milling speed, feed per tooth and milling depth on surface microstructure in high-speed milling of titanium alloy TC17 is little. There is no obvious phase change, as indicating that most of the heat generated by chip away, little heat incoming workpiece, under the conditions of high speed milling titanium alloy TC17.


2012 ◽  
Vol 443-444 ◽  
pp. 127-132
Author(s):  
Wei Jun Tian ◽  
Yu Li ◽  
Zhen Chao Yang ◽  
Chang Feng Yao ◽  
Jun Xue Ren

The paper is concerned with the effect of cutting parameters on surface microhardness in the high speed milling of titanium alloy TC17 with carbide cutting tools by single factor experiment. To provide experimental evidence for process parameter optimization and surface quality control in high-speed cutting titanium alloy parts. The results show that to aim for lower hardening layer depth, cutting parameters can be optimized as: vc=391.7m/min, fz=0.05mm/z, ap=0.45mm. The effect of cutting parameters on microhardness has experienced surface hardening-softening - re-strengthening - the process of stabilizing,in the experimental range.


2013 ◽  
Vol 584 ◽  
pp. 20-23
Author(s):  
Mao Hua Xiao ◽  
Ning He ◽  
Liang Li ◽  
Xiu Qing Fu

The method to measure the cutting speed when high speed milling nickel alloy Inconel 718 based on semi-artificial thermocouple. The cutting parameters, tool wear and so on the cutting temperature were analyzed. The tests showed that the temperature was gradually increased with the increase of cutting speed. The cutting speed must be more than 600m/min, when the ceramic tools would perform better cutting performance in the high-speed milling nickel-based superalloy. In order to achieve more efficient machining, milling speed can be increased to more than 1000m/min. The impact amount of Radial depth of cut and feed per tooth were relatively small.


Sign in / Sign up

Export Citation Format

Share Document