The Influence of Cutting Parameters on Machined Surface Microhardness during High Speed Milling of Titanium Alloy TC17

2012 ◽  
Vol 443-444 ◽  
pp. 127-132
Author(s):  
Wei Jun Tian ◽  
Yu Li ◽  
Zhen Chao Yang ◽  
Chang Feng Yao ◽  
Jun Xue Ren

The paper is concerned with the effect of cutting parameters on surface microhardness in the high speed milling of titanium alloy TC17 with carbide cutting tools by single factor experiment. To provide experimental evidence for process parameter optimization and surface quality control in high-speed cutting titanium alloy parts. The results show that to aim for lower hardening layer depth, cutting parameters can be optimized as: vc=391.7m/min, fz=0.05mm/z, ap=0.45mm. The effect of cutting parameters on microhardness has experienced surface hardening-softening - re-strengthening - the process of stabilizing,in the experimental range.

2012 ◽  
Vol 443-444 ◽  
pp. 133-137 ◽  
Author(s):  
Yu Li ◽  
Wei Jun Tian ◽  
Zhen Chao Yang ◽  
Chang Feng Yao ◽  
Jun Xue Ren

The paper is concerned with the effect of cutting parameters on surface microstructure of titanium alloy TC17 in high speed milling with the carbide cutting tools by single factor experiment. It will be provided experimental evidence for optimization cutting parameters and surface quality control of titanium alloy parts in high-speed cutting process. It is observing microstructure with Germany's Leica DMI 5000M inverted metallurgical microscope. The results show that in the range of experimental parameters, the effect of milling speed, feed per tooth and milling depth on surface microstructure in high-speed milling of titanium alloy TC17 is little. There is no obvious phase change, as indicating that most of the heat generated by chip away, little heat incoming workpiece, under the conditions of high speed milling titanium alloy TC17.


2012 ◽  
Vol 723 ◽  
pp. 177-181 ◽  
Author(s):  
Qi Shi ◽  
Yin Fei Yang ◽  
Ning He ◽  
Liang Li ◽  
Wei Zhao

TC4-DT is a new damage-tolerant titanium alloy. In the paper, a series of experiments on tool wear and surface integrity in high speed milling of the alloy were carried out. The tool lives of different tool materials were studied and the wear mechanism of cutting tools was also investigated. Then surface integrity, including surface roughness, microhardness and metallurgical structure was studied and analyzed in high speed milling at different tool wear status. Results showed that K10 is the most suitable cutting tool after considering a combination of factors. And good surface integrity could be obtained in high speed milling of TC4-DT under all cutting situations. In addition, even with acutely worn stages, there has been no so-called serious hardening layer (or white layer) according to the study of microhardness and metallurgical structure beneath the machined surface.


2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


2011 ◽  
Vol 188 ◽  
pp. 179-183 ◽  
Author(s):  
Yang Jun Wang ◽  
M. Zhou ◽  
Y.H. Zhao

For the purpose of investigating the effect on surface micro-topography of cutting parameters in high speed milling of SiCp/Al Composites, the high speed milling experiments were performed .The machined surface was measured by Taylor Hobson roughness tester and OLS3000 Confocal Laser Scanning Microscope. The acquired surface data was dealt with the three-dimensional roughness method. The three-dimensional root-mean-square deviation of the surface Sq and two-dimensional root-mean-square deviation Rq were compared. The effects of cutting parameters on three-dimensional roughness parameter were also investigated. The results showed that both feed rate and depth of cut have a little effect on the value of three-dimensional roughness parameter,and the cutting speed is the main affecting factor.


2011 ◽  
Vol 314-316 ◽  
pp. 1258-1261
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools parameters are determined by simulating the influences of cutting temperature, cutting force on the tools parameters using FEA.


2011 ◽  
Vol 188 ◽  
pp. 216-219 ◽  
Author(s):  
M.H. Wang ◽  
Zhong Hai Liu ◽  
Hu Jun Wang

In order to improve machined surface quality and reduce the deformation, the residual stress involved in cutting titanium alloy was studied under different cutting speed and cutting depth by finite element simulation method. The results indicate that the increase of cutting speed and cutting depth are helpful to the surface residual compressive stress generating. However the increase of cutting speed also leads to the increase of surface residual tensile stress, the effect degree is relatively small. It is required to select higher cutting speed and smaller cutting depth to improve the surface stress state and reduce the unexpected distortion.


2020 ◽  
Vol 846 ◽  
pp. 133-138
Author(s):  
Gandjar Kiswanto ◽  
Adrian Mandala ◽  
Maulana Azmi ◽  
Tae Jo Ko

Micro-milling offers high flexibility by producing complex 3D micro-scale products. Weight reduction are one of the optimizations of the product that can make it stronger and more efficient nowadays. Titanium are the most commonly used for micro-scale products especially in biomedical industries because of the biocompatibility properties. Titanium alloys offers high strength with low density and high corrosion resistance that is suitable for weight reduction. This study aims to investigate the influence of high speed cutting parameters to the surface roughness in micromilling of titanium alloy Ti-6Al-4V as high speed cutting offers more productivity since producing more cutting length in the same time. experiments are carried out by micromilling process with variations in high speed cutting parameters of spindle speed and feed rate with a constant depth of cut using a carbide cutting tool of with a diameter of 1 mm. The machining results in the form of a 4 mm slot with a depth as the same as depth of cut, which then measures its surface roughness. It was found that higher feed rate that is followed by higher spindle speed will produce better surface roughness.


2009 ◽  
Vol 626-627 ◽  
pp. 189-194
Author(s):  
P. Liu ◽  
Jiu Hua Xu ◽  
Yu Can Fu

TA15 (Ti-6.5Al-2Zr-1Mo-1V) is a close alpha titanium alloy strengthened by solid solution with Al and other component. A series of experiments were carried out on normal and high speed milling of TA15. The recommended tools for many years had been the uncoated tungsten carbide grade K. In this work, the tool life of coated carbide tools used in high speed milling of forging and cast titanium alloy was studied. Additionally, the wear mechanism of cutting tools was also discussed. Finally, surface integrity, including surface roughness, metallograph and work hardening, were examined and analyzed. The result shows that the surface quality of forging and cast machined by carbide cutter is similar, but the tool life of carbide in high speed milling of forging TA15 is longer than that in high speed milling of cast TA15.


2010 ◽  
Vol 431-432 ◽  
pp. 245-248
Author(s):  
Yu Wang ◽  
Yuan Sheng Zhai ◽  
Fu Gang Yan ◽  
Xian Li Liu

PCBN cutting tools is in high speed, high temperature and high pressure environment when high speed precision hard cutting hardened steel. Shear extrusion and slip effect in high speed cutting, cutting tools wear mechanisms are different from common cutting, even cutting tools wear mechanisms in high speed is in research stage at present. In this paper, coated PCBN cutting tools wear mechanisms in high speed cutting(v=200~600m/min) GCr15 (HRC62-64) is studied, it is helpful to obtain cutting tools structure design, cutting parameters and improve cutting tools use efficiency.


Sign in / Sign up

Export Citation Format

Share Document