Numerical Simulation of Machining Distortion of Residually Stressed Aircraft Aluminum Components

2006 ◽  
Vol 315-316 ◽  
pp. 235-238 ◽  
Author(s):  
Q.C. Wang ◽  
Xiao Dong Hu ◽  
W. Li ◽  
Ju Long Yuan

The presence of residual stress in aircraft aluminum components can give rise to distortion after machining. Excessive distortion may result in the rejection of a part or the need for costly and time-consuming rework prior to placement in service. The purpose of this research was to develop a methodology for the prediction of machining-induced distortions of residually stressed aircraft aluminum components. Numerical simulation results show that the magnitude of machining distortion is strongly related to the square root of Stain Energy Density W or Stress Range σ . The experimental results demonstrate good agreement with the predicted machining distortions of 7075T73 bulkheads. It included that the original residual stress in the blocks of aircraft aluminum component is one of key factors to cause machining distortion.

2012 ◽  
Vol 426 ◽  
pp. 143-146 ◽  
Author(s):  
Jie Chen

When machining multi-frame complex components, more than 90% of the materials would be removed, resulting in severe distortion of the parts due to the weakened rigidity and the release of residual stress. This might also lead to stress concentration and damage of the parts. The effect of material removal from residually stressed billet is simulated using FEA software ANSYS, and the causations of distortion is analyzed. To verify the finite element simulation, a high speed milling test on aluminum alloy 7050T7351 is carried out. The results show that the simulation result is consistent with the experimental one. It included that the original residual stress in the blocks of aero-aluminum component is one of key factors to cause machining distortion.


2010 ◽  
Vol 142 ◽  
pp. 122-125 ◽  
Author(s):  
Yuan Wei Liu

In order to reduce the weight of airplane and increase its mechanical behaviors, more and larger integrated parts are applied in modern aviation industry. When machining multi-frame aeroplane parts, more than 90% of the materials would be removed, resulting in severe distortion of the parts due to the weakened rigidity and the release of residual stress. This might also lead to stress concentration and damage of the parts. The effect of material removal from residually stressed billet is simulated using FEA software ANSYS, and the causations of distortion is analyzed. To verify the finite element simulation, a high speed milling test on aluminum alloy 7050T7351 is carried out. The results show that the simulation result is consistent with the experimental one. It included that the original residual stress in the blocks of aero-aluminum component is one of key factors to cause machining distortion.


2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


2016 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Mohd Zaid Othman ◽  
Qasim H. Shah ◽  
Muhammad Akram Muhammad Khan ◽  
Tan Kean Sheng ◽  
M. A. Yahaya ◽  
...  

A series of numerical simulations utilizing LS-DYNA was performed to determine the mid-point deformations of V-shaped plates due to blast loading. The numerical simulation results were then compared with experimental results from published literature. The V-shaped plate is made of DOMEX 700 and is used underneath an armour personal carrier vehicle as an anti-tank mine to mitigate the effects of explosion from landmines in a battlefield. The performed numerical simulations of blast loading of V-shaped plates consisted of various angles i.e. 60°, 90°, 120°, 150° and 180°; variable mass of explosives located at the central mid-point of the V-shaped vertex with various stand-off distances. It could be seen that the numerical simulations produced good agreement with the experimental results where the average difference was about 26.6%.


2005 ◽  
Vol 490-491 ◽  
pp. 85-90 ◽  
Author(s):  
Xiang Xue ◽  
Jing Tian ◽  
Guoming Xiu

A numerical simulation system, which integrated FDM (Finite Difference Method) and FEM (Finite Element Method) and coupled temperature field and stress field, was established. This system was then validated by simulation of a stress frame casting. The calculated results are satisfactory and in good agreement with the theoretical analysis. As a practical application, a wave-guide casting was simulated. The stress evolution during casting solidification, residual stress and deformation are predicted.


2009 ◽  
Vol 79-82 ◽  
pp. 1277-1280
Author(s):  
Yu Zheng ◽  
Xiao Ming Wang ◽  
Wen Bin Li ◽  
Wen Jin Yao

In order to study the effects of liner materials on the formation of Shaped Charges with Double Layer Liners (SCDLL) into tandem Explosively Formed Projectile (EFP), the formation mechanism of DLSCL was studied. Utilizing two-dimensional finite element dynamic code AUTODYN, the numerical simulations on the mechanical phenomenon of SCDLL forming into tandem EFP were carried out. X-ray pictures were obtained after Experiments on SCDLL. Comparisons between experimental results and numerical simulation results have good agreement. It can be concluded from the results that the materials properties and configurations of both liners are crucial to the formation of tandem EFP.


2020 ◽  
Vol 70 (1) ◽  
pp. 35-40
Author(s):  
Wenlong Xu ◽  
Cheng Wang ◽  
Jianming Yuan ◽  
Weiliang Goh ◽  
Bin Xu

Annular shaped charge can efficiently create large penetration diameter, which can solve the problem of small penetration diameter of a traditional shaped charge, and thus meeting the requirements of large penetration diameter in some specific situations. In this paper, the influence of five kinds shell structures, i.e. no shell, aluminum shell with thickness of 2.0 mm and steel shell with thickness of 2.0 mm, 3.0 mm and 4.0 mm, on bore-center annular shaped charges (BCASCs) formation and penetrating steel targets was investigated by numerical simulations and experiments. The numerical simulation results are in good agreement with the experimental results. The results showed that, from no shell to aluminum shell of 2.0 mm and then to steel shell of 2.0 mm, 3.0 mm and 4.0 mm for BCASCs, the diameter and radial velocity of projectile head decrease, the axial velocity of BCASC projectiles increases gradually, the penetration diameter of the targets decreases, and the penetration depth increases. The penetration diameter caused by the BCASC with no shell is the largest, being 116.0 mm (1.16D), D is the charge diameter. The penetration depth caused by the BCASC with steel shell of 4.0 mm thickness is the deepest, being 76.4 mm (0.76D).


Author(s):  
Xiaoxu Du ◽  
Zhengdong Zhang

The steady non cavitation hydrodynamic characteristics of CLB4-55-1 tandem propeller and the steady cavitation flows of NACA66 hydrofoil are numerically studied firstly based on the RANS equations of homogeneous multiphase using CFD theory, combined with the SST k-ω turbulent model and Z-G-B cavitation model. Numerical simulation results are in good agreement with the experimental results, which indicates that the numerical method is reliable and accurate. Then, the cavitation performance of the tandem propeller are numerical simulated and analyzed. The results show that the computational model can predict the cavitation performance of tandem propeller accurately. The cavitation performance of tandem propeller is nearly the same as single propeller, however, the cavitation phenomenon of back propeller is greater than the head propeller at certain advance coefficient and cavitation number. The cavitation phenomenon will disappear with the increase of the advance coefficient or the cavitation number.


2010 ◽  
Vol 19 (05) ◽  
pp. 1015-1024
Author(s):  
SİNEM ÖLMEZ ◽  
UĞUR ÇAM

In this paper, a Tow–Thomas biquadratic filter designed in square root domain is proposed. The presented filter is constructed with a lossy integrator, a lossless integrator, and a summer block. To the best knowledge of the authors, the filter is the first square root domain Tow–Thomas filter in the literature. The state space synthesis method is used to design the biquadratic filter. The filter operated at 2.5 V supply voltage is simulated by using SPICE simulation program with 0.25 μm TSMC CMOS model parameters. Simulation results are in good agreement with theoretical results that the cut-off frequency and quality factor of the filter are tunable electronically.


2011 ◽  
Vol 480-481 ◽  
pp. 574-579
Author(s):  
Lue Zhang ◽  
Hong Hu ◽  
Yong Cao

To reveal the jetting of fine drops, model of 2-phase flow between gas and liquid is offered based on volume of fluid method. Numerical simulation is launched for the droplet generation through narrow nozzle, and key factors are discussed. Aiming at the ink marking of defective dies in IC production, a jetting inker driven by piezoceramic stacks is developed. The actuation properties are derived; waveform of induced pressure at nozzle entrance is estimated, which coincides the numerical results. Performance of ink dot jetting is evaluated and simulation results are verified.


Sign in / Sign up

Export Citation Format

Share Document