scholarly journals Effects of Shell on Bore center Annular Shaped Charges Formation and Penetrating into Steel Targets

2020 ◽  
Vol 70 (1) ◽  
pp. 35-40
Author(s):  
Wenlong Xu ◽  
Cheng Wang ◽  
Jianming Yuan ◽  
Weiliang Goh ◽  
Bin Xu

Annular shaped charge can efficiently create large penetration diameter, which can solve the problem of small penetration diameter of a traditional shaped charge, and thus meeting the requirements of large penetration diameter in some specific situations. In this paper, the influence of five kinds shell structures, i.e. no shell, aluminum shell with thickness of 2.0 mm and steel shell with thickness of 2.0 mm, 3.0 mm and 4.0 mm, on bore-center annular shaped charges (BCASCs) formation and penetrating steel targets was investigated by numerical simulations and experiments. The numerical simulation results are in good agreement with the experimental results. The results showed that, from no shell to aluminum shell of 2.0 mm and then to steel shell of 2.0 mm, 3.0 mm and 4.0 mm for BCASCs, the diameter and radial velocity of projectile head decrease, the axial velocity of BCASC projectiles increases gradually, the penetration diameter of the targets decreases, and the penetration depth increases. The penetration diameter caused by the BCASC with no shell is the largest, being 116.0 mm (1.16D), D is the charge diameter. The penetration depth caused by the BCASC with steel shell of 4.0 mm thickness is the deepest, being 76.4 mm (0.76D).

2016 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Mohd Zaid Othman ◽  
Qasim H. Shah ◽  
Muhammad Akram Muhammad Khan ◽  
Tan Kean Sheng ◽  
M. A. Yahaya ◽  
...  

A series of numerical simulations utilizing LS-DYNA was performed to determine the mid-point deformations of V-shaped plates due to blast loading. The numerical simulation results were then compared with experimental results from published literature. The V-shaped plate is made of DOMEX 700 and is used underneath an armour personal carrier vehicle as an anti-tank mine to mitigate the effects of explosion from landmines in a battlefield. The performed numerical simulations of blast loading of V-shaped plates consisted of various angles i.e. 60°, 90°, 120°, 150° and 180°; variable mass of explosives located at the central mid-point of the V-shaped vertex with various stand-off distances. It could be seen that the numerical simulations produced good agreement with the experimental results where the average difference was about 26.6%.


2009 ◽  
Vol 79-82 ◽  
pp. 1277-1280
Author(s):  
Yu Zheng ◽  
Xiao Ming Wang ◽  
Wen Bin Li ◽  
Wen Jin Yao

In order to study the effects of liner materials on the formation of Shaped Charges with Double Layer Liners (SCDLL) into tandem Explosively Formed Projectile (EFP), the formation mechanism of DLSCL was studied. Utilizing two-dimensional finite element dynamic code AUTODYN, the numerical simulations on the mechanical phenomenon of SCDLL forming into tandem EFP were carried out. X-ray pictures were obtained after Experiments on SCDLL. Comparisons between experimental results and numerical simulation results have good agreement. It can be concluded from the results that the materials properties and configurations of both liners are crucial to the formation of tandem EFP.


2011 ◽  
Vol 52-54 ◽  
pp. 162-167 ◽  
Author(s):  
Qin Shu Miao ◽  
Xiao Ming Wang ◽  
Yu Zheng

In order to solve two problems when simulating the phenomenon of Shaped Charge Liner penetrating into target, an example was simulated to study the influence of mesh size and target dimension on the penetration results using AUTODYN-2D. The relationship between the Shaped Charge Liner parameters and the critical dimension of the target was gained.The effects of mesh sizes on the penetration depth, aperture,and calculation time were studied. After analyzing the simulation results,a proper range of mesh size was obtained. The simulation results agree well with the test results. The research could provide reference on the simulation of Shaped Charge Liner.


2011 ◽  
Vol 308-310 ◽  
pp. 2340-2344 ◽  
Author(s):  
Xiao Yu Wang ◽  
Zong Xi Cai ◽  
Peng Cheng Su ◽  
Hai Feng Zhao ◽  
Yi Lan Kang

In order to determine the normal force acting on the TBM disc cutter, a 3-D FEM model is established to simulate the cutting process, with the failure effect of the rock. Afterwards, by using this model, a series of numerical simulations are performed. Based on the numerical simulation results, via modifying Evans formula, an improved formula is given. The modified formula indicates the relationship between the normal force acting on a single disc cutter and the penetration depth, and contains the influence of formation stress and wear.


2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

The dielectric response of rocks results from electric double layer (EDL), Maxwell-Wagner (MW), and dipolar polarizations. The EDL polarization is a function of solid-fluid interfaces, pore water, and pore geometry. MW and dipolar polarizations are functions of charge accumulation at the interface between materials with contrasting impedances and the volumetric concentration of its constituents, respectively. However, conventional interpretation of dielectric measurements only accounts for volumetric concentrations of rock components and their permittivities, not interfacial properties such as wettability. Numerical simulations of dielectric response of rocks provides an ideal framework to quantify the impact of wettability and water saturation ( Sw) on electric polarization mechanisms. Therefore, in this paper we introduce a numerical simulation method to compute pore-scale dielectric dispersion effects in the interval from 100 Hz to 1 GHz including impacts of pore structure, Sw, and wettability on permittivity measurements. We solve the quasi-electrostatic Maxwell's equations in three-dimensional (3D) pore-scale rock images in the frequency domain using the finite volume method. Then, we verify simulation results for a spherical material by comparing with the corresponding analytical solution. Additionally, we introduce a technique to incorporate α-polarization to the simulation and we verify it by comparing pore-scale simulation results to experimental measurements on a Berea sandstone sample. Finally, we quantify the impact of Sw and wettability on broadband dielectric permittivity measurements through pore-scale numerical simulations. The numerical simulation results show that mixed-wet rocks are more sensitive than water-wet rocks to changes in Sw at sub-MHz frequencies. Furthermore, permittivity and conductivity of mixed-wet rocks have weaker and stronger dispersive behaviors, respectively, when compared to water-wet rocks. Finally, numerical simulations indicate that conductivity of mixed-wet rocks can vary by three orders of magnitude from 100 Hz to 1 GHz. Therefore, Archie’s equation calibrated at the wrong frequency could lead to water saturation errors of 73%.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qing Dong ◽  
Zheng-hua Zhou ◽  
Su Jie ◽  
Bing Hao ◽  
Yuan-dong Li

At engineering practice, the theoretical basis for the cross-over method, used to obtain shear wave arrival time in the downhole method of the wave velocity test by surface forward and backward strike, is that the polarity of P-wave keeps the same, while the polarity of S-wave transforms when the direction of strike inverted. However, the characteristics of signals recorded in tests are often found to conflict with this theoretical basis for the cross-over method, namely, the polarity of the P-wave also transforms under the action of surface forward and backward strike. Therefore, 3D finite element numerical simulations were conducted to study the validity of the theoretical basis for the cross-over method. The results show that both shear and compression waves are observed to be in 180° phase difference between horizontal signal traces, consistent with the direction of excitation generated by reversed impulse. Furthermore, numerical simulation results prove to be reliable by the analytic solution; it shows that the theoretical basis for the cross-over method applied to the downhole wave velocity test is improper. In meanwhile, numerical simulations reveal the factors (inclining excitation, geophone deflection, inclination, and background noise) that may cause the polarity of the P-wave not to reverse under surface forward and backward strike. Then, as to reduce the influence factors, we propose a method for the downhole wave velocity test under surface strike, the time difference of arrival is based between source peak and response peak, and numerical simulation results show that the S-wave velocity by this method is close to the theoretical S-wave velocity of soil.


2014 ◽  
Vol 6 ◽  
pp. 853069 ◽  
Author(s):  
Dong Liu ◽  
Ying-ze Wang ◽  
Hyoung-Bum Kim ◽  
Fang-neng Zhu ◽  
Chun-lin Wang

The wavy vortex flow in the plain model was studied by experimental measurement; the preliminary feature of wavy vortex flow was obtained. This flow field in the plain model was also studied by numerical simulation. The reliability of numerical simulation was verified by comparing with the experimental and numerical simulation results. To study the slit wall effect on the wavy vortex flow regime, another two models with different slit number were considered; the slit number was 6 and 12. By comparing the wavy vortex flow field in different models, the axial fluctuation of Taylor vortices was found to be different, which was increased with the increasing of slit number. The maximum radial velocity from the inner cylinder to the outer one in the 6-slit number was increased by 12.7% compared to that of plain model. From the results of different circumferential position in the same slit model, it can be found that the maximum radial velocity in slit plane is significantly greater than that in other planes. The size of Taylor vortices in different models was also calculated, which was found to be increased in the 6-slit model but was not changed as the slit number increased further.


2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


Sign in / Sign up

Export Citation Format

Share Document