Properties of Sol-Gel Bonding Castables

2007 ◽  
Vol 336-338 ◽  
pp. 1484-1487 ◽  
Author(s):  
Feng Cao ◽  
Shi Gang Long ◽  
Xing Rong Wu ◽  
Rainer Telle

The silica-alumina sol bonding agent, prepared by the sol gel route from ethyl silicate and aluminium isopropanol, was characterized by X ray diffraction, infrared spectroscopy, thermogravimetric analysis, particle size distribution. It was utilized in the corundum based refractory castables. The properties and characters such as cold crushing strength, apparent porosity, hot modulus of rupture, pore size distribution, scanning electron microscopy, energy dispersive spectral analysis, thermal shock and slag corrosion resistance tests of the selected samples from both the sol-gel bonding castables and the cement bonding castables were determined to identify the role of sol-gel additive in castables. The results show that the sol-gel bonding castables have a lot of advantages compared with traditional cement bonding castables and are more suitable for application in the ladles.

2008 ◽  
Vol 368-372 ◽  
pp. 1146-1148
Author(s):  
Feng Cao ◽  
C.Y. Wang ◽  
P.S. Tang ◽  
C.Y. Lu ◽  
H.F. Chen ◽  
...  

The silica-alumina sol bonding agent, prepared by the sol gel route from ethyl silicate and aluminium isopropanol, was utilized in the refractory castables. The influence of structure on the heat transfer has been investigated using different sorts of refractory matrix. The results indicated that the heat conductivity of sol-gel bonded castables was considerably affected by their structure. The phase composition of matrix, porosity, pore size distribution and pore size structure were the most important factors. Thermal conductivity has been measured from the ambient temperature up to 1250 °C. The influence of crystalline phases and the glassy phase formation and the influence of the pore size distribution on the thermal conductivity were also described in this work.


2017 ◽  
Vol 726 ◽  
pp. 204-209 ◽  
Author(s):  
Jing Yang ◽  
Bao Song Li ◽  
Zhi Tong ◽  
Rui Hua Mu

Pd/Ag/SiO2 sols and powder materials were prepared by adding AgNO3 and Pd (NO3)2·2H2O into a methyl-modified silica sol. Tetraethylorthosilicate and methyltriethoxysilane were used as the silica precursor for the sol-gel reaction. The obtained SiO2 sols and powder materials were characterized by sol particle size distribution, zeta potential analysis, UV-Vis spectra, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) measurement. It was found that most of the particle sizes of the prepared Pd/Ag/SiO2 sols are about 2~10 nm with narrow size distribution. The zeta potential of Pd/Ag/SiO2 sol with Pd/Ag molar ratio of 7.5/2.5 presents the highest value. The FTIR analysis substantiates that the Si-CH3 groups exist in the silica network and the formed Pd/Ag/SiO2 sol particles possess linear structure. XRD characterization indicates that the Pd2+ and Ag+ in the Pd/Ag/SiO2 materials had be reduced to Pd0 and Ag0, respectively, after annealed in a nitrogen atmosphere at 350°C.


2016 ◽  
Vol 864 ◽  
pp. 117-122 ◽  
Author(s):  
Hesni Shabrany ◽  
Hendry Tju ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

This paper discusses the catalytic activity of ZnO/CuO/nanographene platelets composites under visible light and ultrasound irradiation separately. The ZnO/CuO/nanographene platelets composites were synthesized using a sol-gel method. X-ray diffraction and nitrogen adsorption spectroscopy were employed to investigate the structural and surface area of the catalyst. The catalytic activity results showed that the presence of nanographene platelets in ZnO/CuO nanocomposites improved its efficiency in degrading methylene blue. A scavenger method was also used to understand the role of charged carriers and the active radical involved in the catalytic activity.


2009 ◽  
Vol 24 (2) ◽  
pp. 475-481 ◽  
Author(s):  
R. Ceccato ◽  
S. Dirè ◽  
T. Barone ◽  
G. De Santo ◽  
E. Cazzanelli

The structural evolution with temperature of some V2O5 gels and thin films is presented, and the role of the hydrolysis conditions is investigated. Several techniques, i.e., x-ray diffraction, differential thermal analysis, infrared, and temperature-dependent Raman spectroscopy, have been used to follow the thermal behavior of the samples. When the bulk xerogels begin to change from a nanocrystalline phase to the orthorhombic α-V2O5, in the temperature range 280 to 300 °C, a growth of vanadium oxide nanotubes also occurs, while at higher temperatures the crystallization into the α phase prevails. A slightly different evolution is observed for heat treated thin films, which show a structure containing polyvanadate chains near room temperature. They also present a growth of nanotubes for intermediate temperatures and a complete crystallization into the α phase when the temperature is further increased.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Marcela F. Silva ◽  
Luiz A. S. de Oliveira ◽  
Mariani A. Ciciliati ◽  
Michele K. Lima ◽  
Flávio F. Ivashita ◽  
...  

Fe2O3 nanoparticles (as maghemite and hematite mixtures) were prepared using adapted sol-gel method from a polyvinylpyrrolidone (PVP) aqueous solution in various Fe3+ : PVP monomer ratios. Analysis of X-ray diffraction was obtained to evaluate the crystalline state, average crystallite size, and composition of iron oxide phases. The morphology and average nanoparticles size were evaluated by electronic transmission microscopy. Magnetic properties of iron oxide were analyzed at low and room temperatures. Optical characteristics were evaluated by UV-Vis photoacoustic spectroscopy and the Mössbauer spectrum was obtained in order to evaluate subtle changes in the nuclear environment of the iron atoms.


2015 ◽  
Vol 1123 ◽  
pp. 227-232 ◽  
Author(s):  
Iqriah Kalim Susanto ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

Nanocomposite Fe3O4-CuO-ZnO with different molar ratio of Fe3O4:CuO:ZnO were synthesized using sol-gel method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope, UV-visible diffuse reflectance spectroscopy and vibrating sample magnetometer. The characterization results manifested that the combination of Fe3O4, CuO and ZnO nanoparticles was successful. The photocatalytic activity of nanocomposite with the molar ratio of 1:1:5 was more effective in the degradation of methylene blue under UV light irradiation than pure Fe3O4, CuO, ZnO. The role of photoactive species involved in the photocatalytic reaction was studied and found that holes play the most important role in photodegradation of methylene blue.


2014 ◽  
Vol 22 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Ioana A. Gorodea

Abstract Double perovskite-type oxide Ca2BMoO6 materials, where B = Cr, La and Sm, were prepared by the sol-gel auto-combustion method for the first time. The role of different B-site cations on their synthesis, structures, and magnetic properties was investigated. The synthesis progress was followed by the Fourier transform infrared spectroscopy and the samples’ structure was investigated by X-ray diffraction. The increase of the ionic radii B leads to the decrease of the t-value which reflects the structural distortion from the ideal cubic perovskite. Magnetization measurements were made with a SQUID magnetometer. All compounds are ferimagnetic and magnetic properties are indirectly influenced by the distortion degree of the lattice and disorder on the B/B’ positions


2003 ◽  
Vol 18 (6) ◽  
pp. 1405-1411 ◽  
Author(s):  
Randolph N. Jacobs ◽  
L. Salamanca-Riba

Sol-gel spin coating of lead-titanate films differs from most processing routes, such as metalorganic chemical vapor deposition and pulsed laser deposition, in that crystallization cannot occur without a postdeposition annealing step. This work focuses on the annealing of sol-gel-derived PbZrTiO3 films on LaAlO3 substrates in attempts to identify the precise conditions necessary to grow films of quality similar to that obtained through other techniques. In particular, the effects of Pb excess (in precursor solutions), annealing times, and temperature were investigated through transmission electron microscopy and four-circle x-ray diffraction. The significance of this work is in the direct observation of the correlation between Pb excess and film crystallization. It is shown that the effects of Pb excess on the completeness of film crystallization become more dramatic at lower annealing temperatures, even while epitaxial quality is maintained.


Sign in / Sign up

Export Citation Format

Share Document