Modeling Flexforming (Fluid Cell Forming) Process with Finite Element Method

2007 ◽  
Vol 344 ◽  
pp. 469-476 ◽  
Author(s):  
H. Ali Hatipoğlu ◽  
Naki Polat ◽  
Arif Koksal ◽  
A. Erman Tekkaya

In this paper, the flexforming process is modeled by finite element method in order to investigate the operation window of the problem. Various models are established using explicit approach for the forming operation and implicit approach for the unloading one. In all analyses the rubber diaphragm has been modeled revealing that the modeling of this diaphragm is essential. Using the material Aluminum 2024 T3 alclad sheet alloy, three basic experiments are conducted: Bending of a straight flange specimen, bending of a contoured flange specimen and bulging of a circular specimen. By these experiments the effects of blank thickness, die bend radius, flange length and orientation of the rolling direction of the part have been investigated. Experimental results are compared with finite element results to verify the computational models.

2015 ◽  
Vol 809-810 ◽  
pp. 283-288
Author(s):  
Aurelian Albut

Magnesium alloys were being increasingly considered for sheet forming applications because of their low density and high strength. Therefore, the main areas of research focused on the deformation mechanisms, improving ductility, and possible forming applications [1]. Published results on deformability and springback prediction of magnesium alloy stripes are minimal. The rolling direction of the materials with respect to the deformation direction can greatly influence on springback as well as formability. Though novel approaches relating to the formality of magnesium alloy stripes are available, the change of springback due to the characteristic of each process should be verified by finite element method [2]. In this study, the magnesium alloy strips having the thickness of 1mm, are used to investigate springback characteristics in U-shape bending. The Dynaform 5.8 software was used to simulate the forming process, in which the rolling directions of the material vary with respect to the main deformation axis. There are three different cases: RD0o, RD45o and RD90o. The springback phenomenon is simulated using the same software, but a different module. The following aspects stand out from the simulation tests of the influence of rolling direction on springback parameters: the material rolling direction perpendicular to the deformation direction (0o) leads to reduction of springback intensity; the thickness of the material in case of RD0o is reduced in comparison with the one of RD90o. It can be considered that the results generated by the analysis of springback phenomenon using finite element method are sufficiently accurate and can be considered valid.


Author(s):  
Fei Teng ◽  
Hongyu Wang ◽  
Juncai Sun ◽  
Xiangwei Kong ◽  
Jie Sun ◽  
...  

The surface groove structure has numerous functions based on their shapes. In order to make these functions developed, both new shapes and processing forms of the surface structures are being innovated. In this paper, not only the advanced rubber pad forming process is used, but also a new kind of micro-groove with two-step structures is designed. A model based on multi-plane slab method is proposed to analyze the process. According to the stress acting condition, a half of two-step micro-groove structure is divided into seven areas in the width direction. The thickness variation of plate in each area is obtained. When the shape, depth, width, and height ratio of the first and second-step micro-groove are different, the thickness variations of the plate are analyzed. In order to verify the accuracy of the model, both finite element method and pressing experiment are done. Based on the results provided by both finite element method and experiment, the accuracy of results calculated by analytical model is verified.


2017 ◽  
Vol 746 ◽  
pp. 3-9
Author(s):  
Vladimir G. Kolobov ◽  
Evgenii V. Aryshenskii ◽  
Yaroslav A. Erisov ◽  
Alexander Nam ◽  
Maksim S. Tepterev

The present study investigates the process of beverage can end forming from 5182 aluminum alloy. Stress-strain state during forming is analyzed using finite element method in PAM-Stamp 2G, and fracturing probability is evaluated based on V.L. Kolmogorov’s fracture criterion. It is established, that stress state does not provide the sufficient plasticity margin during ends forming. Blank material plasticity resource is depleted during preliminary and reverse drawing stages, defects accumulation during countersink forming is negligible. Minimum relative elongation value, responsible for fracture-free end forming, is 6% in the rolling direction.


Author(s):  
Dominique Bigot ◽  
Hocine Kebir ◽  
Jean-Marc Roelandt

Nowadays, the simulation of forming processes is rather well integrated in the industrial numerical codes. However, to take into account the possible modifications of the tool during cycle of working, we develop dedicated numerical software. This one more particularly will allow the identification of the fatigue criteria of the tool. With the view to conceiving the optimal shapes of tool allowing increasing their lifespan while ensuring a quality required of the part thus manufactured. This latter uses coupling with friction finite element method — for modelling the axi-symmetric part — and boundary element method — for modelling the tool. For the validation, we modeled forming process.


2011 ◽  
Vol 221 ◽  
pp. 679-683
Author(s):  
Hui Min Li ◽  
Wei Gang Guo

The research progress was introduced about multi-point forming press. It include forming process, reconfigurable die and finite element method. The forming method provided the techonology for development of the aviation industry and automotive industry. The application prospect and techonology dominance were instructed by illuminating body frame of coach.


1982 ◽  
Vol 104 (3) ◽  
pp. 305-311 ◽  
Author(s):  
Ming-Ching Tang ◽  
Shiro Kobayashi

The metal-forming process of shell nosing at room temperature was analyzed by the finite-element method. The strain-rate effects on materials properties were included in the analysis. In cold nosing simulations, the nine-node quadrilateral elements with quadratic velocity distribution were used for the workpiece. The treatment of a moving boundary in the analysis of nosing is discussed and successfully implemented in the finite-element program. FEM simulations of 105-mm dia. shells of AISI 1018 steel and aluminum 2024 were performed and solutions were obtained in terms of load-displacement curves, thickness distribution, elongation, and strain distributions. Comparisons with experimental data show very good agreement.


2019 ◽  
Author(s):  
Ole Seibt ◽  
Dennis Truong ◽  
Niranjan Khadka ◽  
Yu Huang ◽  
Marom Bikson

AbstractTranscranial Direct Current Stimulation (tDCS) dose designs are often based on computational Finite Element Method (FEM) forward modeling studies. These FEM models educate researchers about the resulting current flow (intensity and pattern) and so the resulting neurophysiological and behavioral changes based on tDCS dose (mA), resistivity of head tissues (e.g. skin, skull, CSF, brain), and head anatomy. Moreover, model support optimization of montage to target specific brain regions. Computational models are thus an ancillary tool used to inform the design, set-up and programming of tDCS devices, and investigate the role of parameters such as electrode assembly, current directionality, and polarity of tDCS in optimizing therapeutic interventions. Computational FEM modeling pipeline of tDCS initiates with segmentation of an exemplary magnetic resonance imaging (MRI) scan of a template head into multiple tissue compartments to develop a higher resolution (< 1 mm) MRI derived FEM model using Simpleware ScanIP. Next, electrode assembly (anode and cathode of variant dimension) is positioned over the brain target and meshed at different mesh densities. Finally, a volumetric mesh of the head with electrodes is imported in COMSOL and a quasistatic approximation (stead-state solution method) is implemented with boundary conditions such as inward normal current density (anode), ground (cathode), and electrically insulating remaining boundaries. A successfully solved FEM model is used to visualize the model prediction via different plots (streamlines, volume plot, arrow plot).


Sign in / Sign up

Export Citation Format

Share Document