An Integrated Neural Classifier for Stream Turbine Damage Identification Based on PSO

2007 ◽  
Vol 353-358 ◽  
pp. 2716-2719
Author(s):  
Hong Sheng Su ◽  
You Peng Zhang

To improve the accuracy and overcome the flaws of single neural network, an integrated neural classifier for stream turbine vibration fault identification is proposed based on particle swarm optimization (PSO) in the paper. The method firstly establishes diagnosis decision table of stream turbines from fault sources to fault symptoms based on wavelet package decomposition technique to faults wave-shape. Then the discrete decision table is acquired by quantifying attribute values in decision table using information entropy, a simplified decision table then is generated by rough set reduction. Based on it, several neural networks are applied to identify steam turbine faults at the same time, and their results are integrated with PSO-based. Both simulation and trial in stream turbine damage identification indicate that the proposed method has higher identification rate and shorter training time as well as excellent generalized ability, and is an ideal pattern classifier.

Author(s):  
Lei Si ◽  
Zhongbin Wang ◽  
Xinhua Liu

In order to accurately and conveniently identify the shearer running status, a novel approach based on the integration of rough sets (RS) and improved wavelet neural network (WNN) was proposed. The decision table of RS was discretized through genetic algorithm and the attribution reduction was realized by MIBARK algorithm to simply the samples of WNN. Furthermore, an improved particle swarm optimization algorithm was proposed to optimize the parameters of WNN and the flowchart of proposed approach was designed. Then, a simulation example was provided and some comparisons with other methods were carried out. The simulation results indicated that the proposed approach was feasible and outperforming others. Finally, an industrial application example of mining automation production was demonstrated to verify the effect of proposed system.


Author(s):  
Ayaho Miyamoto

This paper describes an acquisitive method of rule‐type knowledge from the field inspection data on highway bridges. The proposed method is enhanced by introducing an improvement to a traditional data mining technique, i.e. applying the rough set theory to the traditional decision table reduction method. The new rough set theory approach helps in cases of exceptional and contradictory data, which in the traditional decision table reduction method are simply removed from analyses. Instead of automatically removing all apparently contradictory data cases, the proposed method determines whether the data really is contradictory and therefore must be removed or not. The method has been tested with real data on bridge members including girders and filled joints in bridges owned and managed by a highway corporation in Japan. There are, however, numerous inconsistent data in field data. A new method is therefore proposed to solve the problem of data loss. The new method reveals some generally unrecognized decision rules in addition to generally accepted knowledge. Finally, a computer program is developed to perform calculation routines, and some field inspection data on highway bridges is used to show the applicability of the proposed method.


2011 ◽  
Vol 80-81 ◽  
pp. 490-494 ◽  
Author(s):  
Han Bing Liu ◽  
Yu Bo Jiao ◽  
Ya Feng Gong ◽  
Hai Peng Bi ◽  
Yan Yi Sun

A support vector machine (SVM) optimized by particle swarm optimization (PSO)-based damage identification method is proposed in this paper. The classification accuracy of the damage localization and the detection accuracy of severity are used as the fitness function, respectively. The best and can be obtained through velocity and position updating of PSO. A simply supported beam bridge with five girders is provided as numerical example, damage cases with single and multiple suspicious damage elements are established to verify the feasibility of the proposed method. Numerical results indicate that the SVM optimized by PSO method can effectively identify the damage locations and severity.


2013 ◽  
Vol 347-350 ◽  
pp. 3119-3122
Author(s):  
Yan Xue Dong ◽  
Fu Hai Huang

The basic theory of rough set is given and a method for texture classification is proposed. According to the GCLM theory, texture feature is extracted and generate 32 feature vectors to form a decision table, find a minimum set of rules for classification after attribute discretization and knowledge reduction, experimental results show that using rough set theory in texture classification, accompanied by appropriate discrete method and reduction algorithm can get better classification results


2014 ◽  
Vol 556-562 ◽  
pp. 4820-4824
Author(s):  
Ying Xia ◽  
Le Mi ◽  
Hae Young Bae

In study of image affective semantic classification, one problem is the low classification accuracy caused by low-level redundant features. To eliminate the redundancy, a novel image affective classification method based on attributes reduction is proposed. In this method, a decision table is built from the extraction of image features first. And then valid low-level features are determined through the feature selection process using the rough set attribute reduction algorithm. Finally, the semantic recognition is done using SVM. Experiment results show that the proposed method improves the accuracy in image affective semantic classification significantly.


2008 ◽  
Vol 178 (1) ◽  
pp. 181-202 ◽  
Author(s):  
Yuhua Qian ◽  
Jiye Liang ◽  
Deyu Li ◽  
Haiyun Zhang ◽  
Chuangyin Dang

Sign in / Sign up

Export Citation Format

Share Document