The Influence of Titanium Particles Size on Bone Marrow Mensenchymal Stem Cells Viability

2007 ◽  
Vol 361-363 ◽  
pp. 1063-1066 ◽  
Author(s):  
Jiang Wu ◽  
Guang Fu Yin ◽  
Huai Qing Chen ◽  
K.L. Paul Sung

The decrease in bone mass caused by wear debris-induced osteolysis could have been compensated through osteoblasts secreting enough new bone matrix. However, the normal osteoblastic population depends on the regular differentiation of their progenitor cells, the bone marrow mesenchymal stem cells (BMSCs). It is not possible to predict whether wear particles will affect the BMSCs’ viability, and subsequently their differentiation. Furthermore, little is known about the extent to which the sizes of the wear particles loading can impact the viability the most. This study has, therefore, concentrated on the potential mechanism for rat BMSCs’ (rBMSCs) viability influenced by different-sized titanium particle (Ti) loading in vitro.rBMSCs were harvested and loaded with circular Ti particles having three different mean diameters, 0.9, 2.7 and 6.9 .m respectively. The results showed that different-sized titanium particles all inhibited rBMSCs’ proliferation and induced rBMSCs’ apoptosis response , but this influence varied with the size of the Ti particles, their concentration and the duration of loading. The smallest Ti particles (0.9.m) exhibited the earliest and largest suppression on the proliferation and the most powerful induction on the apoptotic response of rBMSCs. qRT-PCR analysis demonstrated that those apoptotic effects were association with the abnormal accentuation of inducible nitric oxide synthase(iNOS) activity. The size of titanium particles generated through wear of a prosthetic device and the osteoblastic progenitor BMSCs may be both important considerations in the development of superior implant technology.

2006 ◽  
Vol 309-311 ◽  
pp. 1383-1386
Author(s):  
Hajime Ohgushi ◽  
Hiroko Machida ◽  
Akira Oshima ◽  
Noriko Kotobuki ◽  
Motohiro Hirose ◽  
...  

After culture expansion of mesenchymal stem cells (MSCs) from a few milliliter of fresh patient’s bone marrow, we applied the MSCs on alumina ceramic ankle prosthesis and further cultured in an osteogenic medium for 2 weeks. After the culture, the MSCs differentiated into osteoblasts, which fabricated bone matrix on the surface of ceramic prosthesis. The expansion of MSCs followed by osteogenic differentiation was done using the commercially available medium with some chemicals and patient’s own serum. The MSCs well proliferated and differentiated into osteoblasts, even the MSCs were from old aged (more than 70 years old) patients. The tissue engineered ceramic prostheses were implanted into osteoarthritic patients. Typical X-ray findings showed that radiodense areas began to appear around the cell-seeded areas on the prosthesis about 2 to 3 months after the operation. These findings confirmed the importance of tissue engineering approach for early bone fixation and the approach can be done using small number of bone marrow cells and patient’s own serum without adding animal-derived products.


2020 ◽  
Author(s):  
Nader Vazifeh Shiran ◽  
Saeid Abroun

Abstract Objective In multiple myeloma (MM), stimulation of osteoclasts and bone marrow (BM) lesions lead to hypercalcemia, renal failure, and anemia. Co-culture of the myeloma cells in both hypocalcemia and hypercalcemia concentrations with bone marrow-mesenchymal stem cells were evaluated. Materials and Methods Viability and survival of myeloma cells were assessed by microculture tetrazolium test and flow cytometric assays. Mesenchymal stem cells (MSCs) were extracted from normal and myeloma patients and were co-cultured with myeloma cells. Results Myeloma cells showed less survival in both hypocalcaemia and hypercalcemia conditions (P <.01). The paracrine and juxtacrine conditions of demineralized bone matrix-induced hypercalcemia increased the proliferation and survival of the cells (P <.05). Unlike myeloma MSCs, normal MSCs reduced the survival of and induced apoptosis in myeloma cells (P <.1). Conclusion Normal healthy-MSCs do not protect myeloma cells, but inhibit them. However, increasing the ratio of myeloma cells to MSCs reduces their inhibitory effects of MSCs and leads to their myelomatous transformation.


2017 ◽  
Vol 43 (4) ◽  
pp. 1648-1662 ◽  
Author(s):  
Wu-Xun Peng ◽  
Lei Wang

Background: This study investigated the effect of using adenovirus-mediated expression of bone morphogenetic protein 2 (Ad-BMP-2) and basic fibroblast growth factor (bFGF) in bone marrow mesenchymal stem cells (BMSCs) in combination with a demineralized bone matrix (DBM) to repair osteonecrosis of the femoral head (ONFH) in Beagle dogs. Methods: A total of 30 Beagle dogs were selected for the isolation of BMSCs, which were cultured and transfected with the recombinant adenovirus vector Ad-BMP2-bFGF-GFP (carrying BMP-2 and bFGF) or a control adenovirus plasmid (encoding green fluorescent protein (Ad-GFP)). The expression of the transfected BMP-2 and bFGF proteins was detected by Western blotting. After transfection, the BMSCs were induced to undergo osteoblastic differentiation. The DBM was prepared to construct a DBM/BMSC complex. Beagle models of canine femoral head defects and necrosis were established and divided into control, DBM, DBM/BMSC, vector Ad-BMP2-bFGF-GFP and Ad-GFP groups. The composite graft was then implanted, and new bone morphology was visualized via X-ray at 3, 6 and 12 weeks after the operation. Hematoxylin and eosin (HE) staining and Masson’s trichrome staining were used to identify new bone formation. Immunohistochemistry was performed to calculate the density of new blood vessels. The compressive and bending strength of the BMSCs was evaluated at 12 weeks after the operation. Results: BMSCs were successfully isolated. The protein expression of BMP-2 and bFGF was significantly higher in the Ad-BMP-2/bFGF group than the normal and Ad-GFP groups. Compared with the control group, at 12 weeks after the operation, the DBM, DBM/BMSC, vector Ad-BMP2-bFGF-GFP and Ad-GFP groups showed a larger area of new bone, higher X-ray scores, greater neovascularization density, and increased compressive and bending strength. The most significant modifications occurred in thevector Ad-BMP2-bFGF-GFP group. Conclusion: The results indicate that the use of Ad-BMP-2/bFGF-modified BMSCs in conjunction with DBM could successfully repair ONFH in a dog model by promoting bone formation and angiogenesis.


2021 ◽  
Vol 11 (10) ◽  
pp. 2030-2036
Author(s):  
Lihua Chen ◽  
Ji’e Shi ◽  
Xiu Qu

To study metformin’s effect on the angiogenesis of human bone marrow mesenchymal stem cells (hBMSCs). Cells were treated with metformin (0.5, 1, 10, 50, 100, 200 and 500 βM) for 14 days, followed by analysis of cell viability and total fatty acid profile, level of VEGFR-2, Tie-2, VE-Cadherin and mTOR signaling protein, cell differentiation by microtubule generation and cell migration by transwell assay. Metformin dose dependently decreased cell survival and reduced palmitate, oleate, stearate and linoleate content. In addition, it downregulated VEGFR-2 and Tie-2 and decreased the angiogenic potential of BMSCs and down-regulated VE-Cadherin. Western blot and PCR analysis showed that metformin activated mTOR signaling and up-regulated the transcription of autophagyrelated genes. Metformin can reduce BMSCs angiogenic potential by regulating mTOR signal pathway.


2013 ◽  
Author(s):  
Melo Ocarino Natalia de ◽  
Silvia Silva Santos ◽  
Lorena Rocha ◽  
Juneo Freitas ◽  
Reis Amanda Maria Sena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document