Burr formation mechanism of ultraprecision cutting for microgrooves on nickel phosphide in consideration of the diamond tool edge radius

2017 ◽  
Vol 94 (9-12) ◽  
pp. 3929-3935 ◽  
Author(s):  
Xin Liu ◽  
Tianfeng Zhou ◽  
Siqin Pang ◽  
Jiaqing Xie ◽  
Xibin Wang
2012 ◽  
Vol 426 ◽  
pp. 235-238 ◽  
Author(s):  
Da Peng Dong ◽  
Xiao Hu Zheng ◽  
Ming Chen ◽  
Qing Long An

In recent years, with the development of machinery industry, micro-cutting technologies have been gradually moving into engineering realization. The paper carries out a series of works on simulation modeling of micro-cutting of Ti-5Al-5V-5Mo-3Cr considering tool edge radius. Unlike conventional cutting, in micro-cutting the effect of tool edge radius which has a marked impact on cutting force, specific cutting energy, burr formation and burr size can no longer be neglected.


2008 ◽  
Vol 375-376 ◽  
pp. 470-473 ◽  
Author(s):  
Dong Lu ◽  
Jian Feng Li ◽  
Yi Ming Rong ◽  
Jie Sun ◽  
Jun Zhou ◽  
...  

A burr formation process in micro-cutting of Al7075-T7451 was analyzed. Three stages of burr formation including steady-state cutting stage, pivoting stage, and burr formation stage are investigated. And the effects of uncut chip thickness, cutting speed and tool edge radius on the burr formation are studied. The simulation results show that the generation of negative shear zone is one of the prime reasons for burr formation. Uncut chip thickness has a significant effect on burr height; however, the cutting speed effect is minor. Unlike in conventional cutting, in micro-cutting the effect of tool edge radius on the burr geometry can no longer be neglected.


2003 ◽  
Vol 140 (1-3) ◽  
pp. 358-362 ◽  
Author(s):  
X.P Li ◽  
M Rahman ◽  
K Liu ◽  
K.S Neo ◽  
C.C Chan

2016 ◽  
Vol 836-837 ◽  
pp. 374-380
Author(s):  
Teng Yi Shang ◽  
Li Jing Xie ◽  
Xiao Lei Chen ◽  
Yu Qin ◽  
Tie Fu

In the meso-scale machining, feed rate, grain size and tool edge radius are in the same order of magnitude, and cutting process is often carried out in the grain interior and grain boundary. In this paper the meso-cutting process of hot-rolled AISI1045 steel is studied and its metallographic microstructure is analyzed for the establishment of multiphase models which incorporate the effect of ferrite and pearlite grains. In order to discover the applicability of multiphase models to the simulation of meso-cutting, three contrast simulation models including multiphase model with rounded-edge cutting insert (model I), multiphase model with sharp edge cutting insert (model II) and equivalent homogeneous material model with rounded-edge cutting insert (model III) are built up for the meso-orthogonal cutting processes of hot-rolled AISI1045. By comparison with the experiments in terms of chip morphology, cutting force and specific cutting force, the most suitable model is identified. Then the stress distiribution is analyzed. And it is found that multiphase model with tool edge radius can give a more accurate prediction of the global variables and reveal more about these important local variables distribution.


2020 ◽  
Vol 108 (7-8) ◽  
pp. 2121-2130
Author(s):  
Xiaoguang Guo ◽  
Yang Li ◽  
Linquan Cai ◽  
Jiang Guo ◽  
Renke Kang ◽  
...  

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Cheng Hu ◽  
Weiwei Zhang ◽  
Kejia Zhuang ◽  
Jinming Zhou ◽  
Han Ding

Abstract The manufacturing of miniaturized components is indispensable in modern industries, where the uncut chip thickness (UCT) inevitably falls into a comparable magnitude with the tool edge radius. Under such circumstances, the ploughing phenomenon between workpiece and tool becomes predominant, followed by the notable formation of dead metal zone (DMZ) and piled-up chip. Although extensive models have been developed, the critical material flow status in such microscale is still confusing and controversial. In this study, a novel material separation model is proposed for the demonstration of workpiece flow mechanism around the tool edge radius. First, four critical positions of workpiece material separation are determined, including three points characterizing the DMZ pattern and one inside considered as stagnation point. The normal and shear stresses as well as friction factors along the entire contact region are clarified based on slip-line theory. It is found that the friction coefficient varies symmetrically about the stagnation point inside DMZ and remains constant for the rest. Then, an analytical force prediction model is developed with Johnson–Cook constitutive model, involving calibrated functions of chip-tool contact length and cutting temperature. The assumed tribology condition and morphologies of material separation including DMZ are clearly observed and verified through various finite element (FE) simulations. Finally, comparisons of cutting forces from cutting experiments and predicted results are adopted for the validation of the predictive model.


2013 ◽  
Vol 662 ◽  
pp. 99-102 ◽  
Author(s):  
Li Qiu Shi ◽  
Xiao Wen Li ◽  
Feng Yu

Monocrystalline silicon is typical of hard brittle materials, a high surface quality can be obtained in ductile-regime cutting. The success of the turning process depends on optimizing the machining parameters such as the tool edge radius, tool rake angles, depth of cut and cutting speed, etc. In this study, based on the ductile–brittle transition mechanism, the optimization of cutting parameters were determined with the commercial, general purpose FEA software Msc.Marc. The result demonstrates that the value of temperature is minimum when the tool rake angle is in the range of -15º~-30º. Smaller tool edge radius was selected while maintaining quality of tool edge radius and tool life. As long as beyond the range of cutting speed 6 ~ 8 mm/s, smaller residual stress can be obtain.


2005 ◽  
Vol 128 (2) ◽  
pp. 474-481 ◽  
Author(s):  
X. Liu ◽  
R. E. DeVor ◽  
S. G. Kapoor

In micromachining, the uncut chip thickness is comparable or even less than the tool edge radius and as a result a chip will not be generated if the uncut chip thickness is less than a critical value, viz., the minimum chip thickness. The minimum chip thickness effect significantly affects machining process performance in terms of cutting forces, tool wear, surface integrity, process stability, etc. In this paper, an analytical model has been developed to predict the minimum chip thickness values, which are critical for the process model development and process planning and optimization. The model accounts for the effects of thermal softening and strain hardening on the minimum chip thickness. The influence of cutting velocity and tool edge radius on the minimum chip thickness has been taken into account. The model has been experimentally validated with 1040 steel and Al6082-T6 over a range of cutting velocities and tool edge radii. The developed model has then been applied to investigate the effects of cutting velocity and edge radius on the normalized minimum chip thickness for various carbon steels with different carbon contents and Al6082-T6.


2010 ◽  
Author(s):  
Y. C. Liang ◽  
K. Yang ◽  
K. N. Zheng ◽  
Q. S. Bai ◽  
W. Q. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document