Property and Microstructure of CNTs/AlN Ceramics

2010 ◽  
Vol 434-435 ◽  
pp. 48-49 ◽  
Author(s):  
Hong Lei Wang ◽  
Xin Gui Zhou ◽  
Hai Jiao Yu ◽  
Shuang Zhao ◽  
Zheng Luo

CNTs/AlN ceramics were fabricated by hot-pressing and their bulk density, flexural strength, thermal conductivity were characterized. The microstructure was also investigated. The fracture surface were analyzed by SEM. TEM was used for analyzing the microstructure. It is found that the density, mechanic and thermal-conductivity properties markedly decreased as the CNTs reinforced AlN ceramic; through microstructure observation, the conglomeration of CNTs mostly exist among the AlN grain boundary, and the CNTs were scathed by the high temperature and pressure of the hot-pressing.

2005 ◽  
Vol 287 ◽  
pp. 183-188 ◽  
Author(s):  
Yi Hyun Park ◽  
Dong Hyun Kim ◽  
Han Ki Yoon ◽  
Akira Kohyama

SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. SiCf/SiC composites are promising for various structural materials. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of the process temperature and pressure is key requirements for the fabrication of SiCf/SiC composites by hot pressing method. In the present work, monolithic LPS-SiC was fabricated by hot pressing method at various temperatures. The starting powder was high purity β-SiC nano-powder with an average particle size of 30nm. Compositions of sintering additives were Al2O3 / Y2O3 = 0.7 and 1.5 (wt.%). Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the process temperature. Particularly, relative density of LPS-SiC fabricated at 1820oC with additive composition of Al2O3/Y2O3=1.5(wt.%) was 95%. Also, flexural strength and elastic modulus were 900MPa and 220GPa, respectively. In the fracture surface of this specimen, the size and shape of SiC grains grew up and changed. Also, tortuous crack paths and occurrence of interfacial debonding were observed.


2018 ◽  
Vol 213 ◽  
pp. 207-214 ◽  
Author(s):  
Michael Hack ◽  
Wolfgang Korte ◽  
Stefan Sträßer ◽  
Matthias Teschner

1999 ◽  
Vol 122 (1) ◽  
pp. 22-26 ◽  
Author(s):  
M. Law ◽  
W. Payten ◽  
K. Snowden

Modeling of welded joints under creep conditions with finite element analysis was undertaken using the theta projection method. The results were compared to modeling based on a simple Norton law. Theta projection data extends the accuracy and predictive capability of finite element modeling of critical structures operating at high temperature and pressure. In some cases analyzed, it was found that the results diverged from those gained using a Norton law creep model. [S0094-9930(00)00601-6]


2020 ◽  
Author(s):  
Dapeng Wen ◽  
Yongfeng Wang ◽  
Junfeng Zhang ◽  
Pengxiao Li ◽  
Zhen-Min Jin

Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Lili Liu ◽  
Xiaozhi Wu ◽  
Weiguo Li ◽  
Rui Wang ◽  
Qing Liu

AbstractThe high temperature and pressure effects on the elastic properties of the AgRE (RE=Sc, Tm, Er, Dy, Tb) intermetallic compounds with B2 structure have been performed from first principle calculations. For the temperature range 0-1000 K, the second order elastic constants for all the AgRE intermetallic compounds follow a normal behavior: they decrease with increasing temperature. The pressure dependence of the second order elastic constants has been investigated on the basis of the third order elastic constants. Temperature and pressure dependent elastic anisotropic parameters A have been calculated based on the temperature and pressure dependent elastic constants.


Sign in / Sign up

Export Citation Format

Share Document