Fatigue Characteristics of Bolted Joint under Transverse Vibration ~Influence of Bolt Tightening Conditions on Transverse Fatigue Strength~

2010 ◽  
Vol 452-453 ◽  
pp. 609-612
Author(s):  
Shinji Hashimura ◽  
YU Kurakake ◽  
Shinichi Umeno

Fatigue tests under transverse vibration were performed for three separate tightening conditions to investigate the grip length and the engaging thread length in this study. The relationships between the apparent fatigue limit (the highest amplitude of transverse vibration force which can be applied to the bolted joint without generating fatigue) and the real fatigue limit of bolt material also were investigated. Results showed that apparent transverse fatigue limit decreased if the grip length was long. And relationships of the apparent fatigue limit and the real fatigue limit were different in each tightening conditions depending on the bending moment at the root of the first thread.

2007 ◽  
Vol 353-358 ◽  
pp. 2037-2040 ◽  
Author(s):  
Shinji Hashimura

In our previous study, loosening-fatigue tests under small transverse vibrations had been performed to elucidate bolt behavior and loosening-fatigue mechanism in the long life region. In this study, the influences of bolt property class and the plastic region tightening on loosening-fatigue characteristics under transverse vibration have been investigated. Result shows that bolt property class has little influence on the loosening-fatigue limits under transverse vibration. Result also shows that the transverse loosening-fatigue limit of the bolt which has been tightened to within the plastic region is lower than the transverse loosening-fatigue limit of the bolt that has been tightened to within the elastic region. This result is the opposite of the result of the axial fatigue characteristics of bolted joints.


2018 ◽  
Vol 165 ◽  
pp. 04011
Author(s):  
Keisuke Tanaka ◽  
Yuta Murase ◽  
Hirohisa Kimachi

The effect of micro-notches on the fatigue strength of nickel thin films was studied. Two types of thin films with 10 μm thickness were produced by electrodeposition using sulfamate solution without and with brightener: ultra-fine grained film (UFG) with the grain size of 384 nm and nano-crystalline grained film (NCG) with that of 17 nm. Micro-sized notches introduced by FIB had the width of 2 μm and various depths from 8 to 150μm. Fatigue tests were conducted under the stress ratio of 0.1. The fatigue strength decreased with increasing depth of notches. NCG had much higher strength than UFG compared at the same notch depth. Notches as small as 8μm did reduce the fatigue strength of both UFG and NCG. The fatigue limit was controlled by the initiation of cracks and no non-propagating crack was observed in specimens fatigued below the fatigue limit. A model of fictitious crack successfully predicted the reduction of the fatigue limit due to micro-notches. The characteristic crack length of NCG was much smaller than the UFG, while the fatigue strength of defect-free NCG was larger than that of UFG. SEM observation of fracture surfaces was conducted to reveal micromechanisms of fatigue crack initiation.


2014 ◽  
Vol 598 ◽  
pp. 13-19
Author(s):  
Ewelina Böhm ◽  
Tadeusz Łagoda

The paper presents an analysis of aluminium and its alloys in terms of fatigue strength. The paper contains information in terms of cyclic fatigue tests of aluminium alloys. On the basis of available literature data, Basquin fatigue characteristics have been designated. On their basis a comparison between chosen fatigue characteristics of aluminium alloys with different chemical composition and element percentage in the substance have been done.


2013 ◽  
Vol 577-578 ◽  
pp. 417-420 ◽  
Author(s):  
Shinji Hashimura ◽  
Tetsuya Torii ◽  
Yukio Miyashita ◽  
Shigeru Yamanaka ◽  
Genki Hibi

Fatigue characteristics of bolted joint tightened with a steel bolt have been discussed extensively. However the fatigue characteristics of bolted joint tightened with a nonferrous bolt have not been sufficiently discussed. In this study, two types of fatigue tests, axial fatigue tests and transverse fatigue tests, for nonferrous bolts were conducted. The nonferrous bolts used in this study made of AZ31 and AZX912 magnesium alloy and A5056 aluminum alloy. The results of both fatigue tests showed that the fatigue limits of the A5056 bolt were the highest of all. The fatigue limits of two kinds of the magnesium alloy bolts were almost the same in both fatigue tests. However the ration of the axial fatigue limits to the transverse fatigue limits were different according to the bolt materials.


2009 ◽  
Vol 419-420 ◽  
pp. 849-852
Author(s):  
Sheng Wu Wang ◽  
Shu Juan Sun ◽  
Ai Ling Wen ◽  
Wei Da Wang ◽  
Shinichi Nishida

The fatigue limit of parts and components that have the multi-notches is important data for the design and manufacture of machinery and traffic equipment which are operated under the high speed or pressure. In this paper the rotating bending fatigue tests have been carried out to investigate the fatigue limit of specimen with double-notch that is constructed of step and blind hole, and analyzed the effect of stress concentrations at the double-notched bottoms on the fatigue limits, using three-dimensional elastic finite element method. Firstly, the fatigue tests of 8 group specimens have been performed for examining the of fatigue limits of the single-notched specimen and double-notched specimen, respectively. Additionally, the stress field interactions between two stress fields by the blind hole notch and step are discussed using three-dimensional elastic finite element method. The main results obtained in this study are as follows: The fatigue limit of the double-notched specimen are down comparison with the fatigue limit of the single-notched specimen; the fatigue limit of the double-notch specimen is insensitive to distance between the blind hole and step for the low carbon structure steel with better ductility; for the high-strength steel, superposition and intensification of the stress concentration by the blind hole and step mutually may be avoided so that their adverse effects on the fatigue strength may be become to minimize, as take appropriate distance between the blind hole and step. The results are significant for the design of engineering design of the multi-notched parts, and the study of fatigue strength.


1951 ◽  
Vol 165 (1) ◽  
pp. 113-124 ◽  
Author(s):  
C. E. Phillips ◽  
R. B. Heywood

The fatigue strength under reversed direct stress was ascertained for specimens of various diameters in the range from 0·19 inch to 2·4 inches, the largest diameter being determined by the capacity of the machines available. Two steels were used in this investigation—a 25-ton mild steel and a 65-ton, per cent nickel-chromium steel. The specimens were either plain or notched (transverse hole) and, as far as possible, geometrical similarity was preserved with regard to the transition radii and the diameter of the transverse hole. A few fatigue tests on other types of notch, such as a circumferential V-groove and a shoulder, were also carried out. No intrinsic size effect with either material was observed with the plain specimens. With transverse-hole specimens in mild steel, the fatigue limit was ±8·4 tons per sq. in. for specimens of 0·33 inch diameter, and 6·1 tons per sq. in. for specimens of 1·7 inches diameter, thus showing that an appreciable size effect was present. A similar size effect was found with the alloy steel specimens containing a transverse hole, and fatigue limits of ±17·1 and ±13·9 tons per sq. in. respectively were obtained for these two sizes of specimen. It is suggested that the low values of fatigue-strength reduction factors usually associated with mild steel as a result of laboratory tests do not apply to the larger sections of this material commonly employed in engineering practice.


1969 ◽  
Vol 11 (4) ◽  
pp. 432-443 ◽  
Author(s):  
P. F. Bray

Rotating bending fatigue tests on En 40B steel gave a fatigue limit for surface failure of 30·5 tonf/in2. With nitrided test-pieces sub-surface failures were produced and, with no allowance being made for residual stresses, a fatigue limit of 34·5 tonf/in2 was obtained for sub-surface failure. In the absence of residual stresses this fatigue limit would probably have been higher.


2011 ◽  
Vol 197-198 ◽  
pp. 1395-1399 ◽  
Author(s):  
Xing Lin Guo ◽  
Jun Ling Fan ◽  
Yan Guang Zhao

Fatigue tests were carried out at different stress levels on cruciform welded joints made from mastensitic stainless steel. The purpose of the present paper was to verify the validity of the thermographic method and to extend its capability on welded structural evaluation, considering the real operating situations. Due to limitations of the traditional fatigue test, the infrared thermographic technique was developed to predict and assess the fatigue limit and the entire S-N (Stress-Life) curve of cruciform welded joints. Through the comparison, the predictions of the fatigue behavior by the thermographic method (TM) manifested good agreement with the traditional method. The present research paper concludes that the TM as a promising method enables us to rapidly obtain reliable fatigue characteristics of welded structural components.


Sign in / Sign up

Export Citation Format

Share Document