Vibration Characteristic Analysis of V-Shaped Electrothermal Microactuator

2012 ◽  
Vol 503 ◽  
pp. 118-121
Author(s):  
Zhen Lu Wang ◽  
Xue Jin Shen ◽  
Ling Zhou ◽  
Xiao Yang Chen

This paper is focused on the finite element analysis (FEA) and theoretical calculation of vibration characterization of V-shaped electrothermal microactuator. A vibration mechanical model about V-shaped electrothermal microactuator is presented. By having a comparison between FEA and theoretical calculation about natural frequencies of V-shaped electrothermal microactuator, the maximum error is within 0.19 %. This paper also analyzes the influences of microactuator geometric parameters on natural frequency. The length and thickness have larger effect on the natural frequency of the actuator, while the angle and width have less effect on the natural frequency.

2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


1999 ◽  
Vol 121 (4) ◽  
pp. 984-988 ◽  
Author(s):  
Alex Y. Tsay ◽  
Jin-Hui Ouyang ◽  
C.-P. Roger Ku ◽  
I. Y. Shen ◽  
David Kuo

This paper studies natural frequencies and mode shapes of a glide head with a piezoelectric transducer (PZT) through calibrated experiments and a finite element analysis. In the experiments, the PZT transducer served as an actuator exciting the glide head from 100 kHz to 1.3 MHz, and a laser Doppler vibrometer (LDV) measured displacement of the glide head at the inner or outer rail. The natural frequencies were measured through PZT impedance and frequency response functions from PZT to LDV. In the finite element analysis, the glide head was meshed by brick elements. The finite element results show that there are two types of vibration modes: slider modes and PZT modes. Only the slider modes are important to glide head applications. Moreover, natural frequencies predicted from the finite element analysis agree well with the experimental results within 5% of error. Finally, the finite element analysis identifies four critical slider dimensions whose tolerance will significantly vary the natural frequencies: PZT bonding length, wing thickness, slider thickness, and air bearing recess depth.


2018 ◽  
Vol 173 ◽  
pp. 01032
Author(s):  
WL Zeng ◽  
Q Cong ◽  
Y Liu

In this paper, the two methods for solving finite element problem, theoretical calculation method and ANSYS simulation analysis method, were used to study deformation and stress situation of each node of triangular truss under different distribution loads. The results of theoretical calculation were compared with those of ANSYS simulation, which showed that the counter-acting forces of each node were exactly the same. For the calculation results of the equivalent stiffness constants of each unit could not be accurate, values of each node deformation calculated by theoretical calculation could be error, but the maximum error rate was no more than 3.6%. By the comparison results, conclusion could be made that the results of ANSYS simulation are more intuitive and image, the values are more accurate and reliable, comparing with those of theoretical calculation, the influence of accuracy of equivalent stiffness constant is much more smaller.


2012 ◽  
Vol 21 (1) ◽  
pp. 096369351202100 ◽  
Author(s):  
Turan Ercopur ◽  
Binnur Goren Kiral

This paper deals with the finite element analysis of free vibration response of the delaminated composite plates. Free vibration analysis is performed by using ANSYS commercial software developing parametric input files. Natural frequency values and associated mode shapes of E-glass/epoxy composite delaminated plates are determined. Effects of delamination shape, dimension and location on the natural frequency and associated mode shapes are investigated and for the purpose of the observing the effect of the boundary conditions, cantilever and clamped-pinned delaminated composite plates are taken into consideration. Comparisons with the results in literature verify the validity of the developed models in this study. It is observed that the natural frequency decreases in the existence of the delamination and level of the decrease depends on the dimension, shape and location of the delamination.


2012 ◽  
Vol 594-597 ◽  
pp. 2655-2658
Author(s):  
Zhen Dong Tan ◽  
Zun Feng Du ◽  
Jian Zhang ◽  
Chao He ◽  
Wei Guo Wu

One of the problems in installing cableway is the estimation of the tension. The mechanical model of coastal shore-to-ship transmission cableway was analyzed with catenary algorithm, compared with the finite element analysis of ANSYS software. The result shows that the tension and its changing amplitude are both gradually decreasing with the increase of the deflection. And, if the deflection is determined, the tension is decreasing with the increase of cableway’s span. These analysis results and conclusions can give the basis to safe installation of the cableway.


2010 ◽  
Vol 160-162 ◽  
pp. 65-70
Author(s):  
Zhen Yu Feng ◽  
Zhao Chen Chen ◽  
Jie Wen Hu ◽  
Qian Yang ◽  
Tian Chun Zou

With the extensive use of composite materials in aviation industry, the research of factors which affect their basic performances in production and usage has become very important. In this paper, a finite element analysis model is built by the commercial software MSC.Nastran / Patran to research the effect of fiber lay-up direction misalignment on the natural frequency of composite laminates. The results show that, in the same boundary conditions, stacking sequence has a significant impact on the natural frequencies and vibration modes of composite laminates, and in the lay-up process, the natural frequency change of laminates caused by 0° fiber lay-up direction misalignment is much larger than the natural frequency change of laminates due to 90° fiber lay-up direction misalignment. In the process control and certification of composite laminate plates lay-up, special attention should be taken to the inspection of 0° direction fibers.


2006 ◽  
Vol 326-328 ◽  
pp. 851-854 ◽  
Author(s):  
Yoon Hyuk Kim ◽  
Chang Hwan Byun ◽  
Taek Yul Oh

In this study, the change of the natural frequencies in mouse femurs with osteoporosis was investigated based on a vibration test and a finite element. Three groups of the femurs include the osteoporotic group, the treated group and the normal group. In the vibration test, the natural frequencies were measured by the mobility test. For the finite element analysis, the micro finite element model of the femur was reconstructed using the Micro-CT images and the Voxel mesh generation algorithm. From the results, the averaged natural frequencies in the osteoporotic group were the highest, followed by those in the treated group. The finite element models were validated within 15% errors by comparing the natural frequencies in the finite element analysis with those in the vibration test. The developed Micro-CT system, the Voxel mesh generation algorithm, the presented finite element analysis, and vibration test could be useful for the investigation of the structural change of the bone tissue, and the diagnosis and the treatment in the osteoporosis.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Yang-zhi Chen ◽  
Shun-ke Liang ◽  
Jiang Ding

The space curve meshing wheel (SCMW) has been studied previously for small power transmission. To extend its application in conventional power transmission, the bending strength of the SCMW needs to be studied. In this paper, the tine's section of the SCMW is optimized, the mechanical model of the bending strength is deduced according to the equations for a couple of given contact curves of the SCMW, and the design formulas of the tines are newly deduced based on the equal bending strength principle. Finally, one design example of a SCMW with elliptical torus cross-section tines is provided. The result shows that the theoretical design attained from the presented formulas coincides with that from the finite element analysis. It dedicates that the SCMW possesses enough equal bending strength to be used to in conventional industrial gearing device design.


2012 ◽  
Vol 204-208 ◽  
pp. 410-413
Author(s):  
Shi Lun Feng ◽  
Jun Li ◽  
Pu Lin Li

The active earth pressure on rigid retaining wall is analyzed using the finite element software ABAQUS. The fill behind the wall is sand and the Mohr–Coulomb constitutive model was used to model the stress–strain behaviour of soils.The finite element analysis results were compared with the Rankine results. The maximum error of the results is about 10% and the finite element analysis result is bigger. So the result obtained from the finite element method could safely be used in actual projects.


Author(s):  
Gareth L. Forbes ◽  
Ahmed M. Reda

The effect of axial restraint (boundary conditions) on the natural frequency of a free spanning pipeline is examined in this paper. Theoretical calculation of the natural frequency of a straight pipeline with simple boundary conditions is a trivial task with exact solutions being available. A pipeline lying on the seabed however is neither completely straight and the interaction with the soil at the span shoulders create more complex boundary conditions. DNV-RP-F105 provides guidance on the calculation of free span boundary conditions with these increased complexities. The DNV recommended practice does not however take into account the effect of the axial restraint on the natural frequency. Results are presented in this paper for a range of axial stiffness combined with span out of straightness for a free spanning pipeline. The results presented show that the effect of axial restraint for moderately out of straight free spans can cause significant deviation in the calculation of the span natural frequency.


Sign in / Sign up

Export Citation Format

Share Document