Micro-Drilling of CFRP Plates Using a High-Speed Spindle

2012 ◽  
Vol 523-524 ◽  
pp. 1035-1040 ◽  
Author(s):  
Keiji Ogawa ◽  
Heisaburo Nakagawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Fundamental characteristics in the micro drilling of carbon fiber reinforced plastic (CFRP) plates are investigated in the present paper. When micro drilling with a high-speed spindle, cutting forces during drilling, such as thrust force and torque, were measured by high resolution dynamometers and drill temperature was monitored by thermography. Comparing the experimental results of CFRP with that of drilling glass fiber-reinforced plastics (GFRP) revealed some unique tendencies. The cutting forces and drill temperature increased drastically. Moreover, drill wear rapidly accelerated. The tool life of CFRP plate drilling is much shorter than that of other plates.

2018 ◽  
Vol 53 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Julian Hoffmann ◽  
Alexander Brast ◽  
Gerhard Scharr

This paper presents a novel method for the ultrasonically assisted insertion of metallic z-pins into thermoplastic composites. Mechanical and microstructural investigations were carried out on glass fiber-reinforced polyamide and polypropylene specimens. The insertion of steel pins into thermoplastic composites led to microstructural changes that differ significantly from the known microstructure of z-pinned thermoset fiber-reinforced plastics. Optical microscopy showed an absence of notable fiber waviness and resin-rich zones around each pin. Instead, the fibers were predominantly deflected in the through-thickness direction by the high insertion forces arising during pin penetration. To gain an initial insight on the resulting properties of the z-pin/thermoplastic interface, the mechanical properties of z-pinned thermoplastic composites under mode I loading were investigated using pullout tests. For reference, the pullout behavior of thermoset carbon fiber-reinforced plastic specimens, reinforced with steel pins was determined too. Due to the poor bonding and lack of friction between the pin and laminate, the determined traction loads of the thermoplastic specimens are well below typical values achieved from pin pullout in thermoset laminates.


2014 ◽  
Vol 1017 ◽  
pp. 411-414
Author(s):  
Takayuki Kitajima ◽  
Jumpei Kusuyama ◽  
Akinori Yui ◽  
Katsuji Fujii ◽  
Yosuke Itoh

Interest in carbon-fiber-reinforced plastic (CFRP) has been growing for the last several years. CFRP, a composite material made of carbon fibers and resins, has high mechanical characteristics and is well known as a difficult-to-cut material. During the process of drilling or cutting of CFRP, tool wear and delamination occur frequently. In this study, the authors developed a milling tool for CFRP using polycrystalline diamond, and the cutting performance of the developed tool was investigated.


Author(s):  
Keiji Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Tsukasa Ayuzawa

Microvia formation technology using lasers has become the dominant method for drilling microvia that are called blind via-holes (BVHs) in printed wiring boards (PWBs). Laser direct drilling (LDD), which is direct drilling of the outer copper foil by laser, has attracted attention as a novel method. In particular, when copper and resin with different processing thresholds are simultaneously drilled, an overhang defect occurs on the drilled hole. On the other hand, aramid fiber reinforced plastics (AFRP) have been replaced by glass fiber reinforced plastics (GFRP) as the material used for the build-up layer because of its cost performance. Moreover, the PWB quality of the particle incrustations around the drilled holes has problems in the manufacturing process. However, the LDD process of such a composite has not been clarified. Therefore, we investigated it by detailed observation using a high-speed camera. We estimated the overhang length using the finite element method (FEM) and experimentally and analytically evaluated the effects of filler contented build-up layers. As a result, we improved drilled-hole quality by using prototype PWBs made of GFRP with filler in the build-up layer.


2015 ◽  
Vol 794 ◽  
pp. 312-319 ◽  
Author(s):  
Fabian Ballier ◽  
Jan Schwennen ◽  
Julian Berkmann ◽  
Jürgen Fleischer

Fiber reinforced plastics are increasingly employed in the automobile industry. The process chain of resin transfer molding offers one approach for realizing structural components made of fiber reinforced plastic in high quantities. In order to increase economic efficiency, automated solutions for the subpreform assembly are required. There is also the need for mechanically highly stressable and at the same time economical joining techniques for joining fiber reinforced plastics with metal. The following article shall provide an approach to meet both of these requirements.


2008 ◽  
Vol 594 ◽  
pp. 193-213
Author(s):  
Chung Shin Chang ◽  
Lih Ren Hwang ◽  
Albert Wen Jeng Hsue

Nine kinds of chamfered main cutting edge carbide tools were used in turning of high-strength glass-fiber-reinforced plastics (GFRP) materials to study the temperature of tip's surface and the cutting forces. Force data from these tests were used to estimate the empirical constants of the mechanical model and verify its prediction capabilities. The friction forces and frictional heat generated on elementary cutting tools are calculated by using the measured cutting forces and the oblique cutting analysis. The heat partition factors between the tip and chip are solved by using the inverse heat transfer analysis, which utilizes temperature on the carbide tip’s surface measured by infrared as the input. The tip’s surface temperature of the carbide is solved by finite element analysis (FEA) and compared with those obtained from experimental measurements. A good agreement demonstrates the accuracy of the proposed model.


2019 ◽  
Vol 53 (20) ◽  
pp. 2777-2788 ◽  
Author(s):  
Moniruddoza Ashir

There is considerable need for research into the application potential of adaptive fiber-reinforced plastics based on shape memory alloys, in particular with regard to industry-specific solutions. Hence, this paper presents the activation time- and voltage amplitude-dependent deformation behavior of adaptive fiber-reinforced plastics incorporating shape memory alloy. In order to attain this goal, shape memory alloy was textile-technically converted into shape memory alloy hybrid yarn using the friction spinning technology. Subsequently, the manufactured hybrid yarn was integrated into the reinforcing fabric in the warp direction using weaving technology. To increase the deformation potential of the adaptive fiber-reinforced plastic, a hinged woven fabric was developed by floating of the warp yarn. The functionalized preform was infused by the Seemann Corporation Resin Infusion Molding Process. Later, an extensive electro-mechanical characterization of the adaptive fiber-reinforced plastic by varying electrical power resulting from the varying voltage amplitude and activation time was completed. The maximum deformation of adaptive fiber-reinforced plastics was achieved at an electrical power of 95 W (50 V/1.9 A) and 60 s of thermal induced activation.


2018 ◽  
Vol 38 (8) ◽  
pp. 351-368 ◽  
Author(s):  
KM John ◽  
S Thirumalai Kumaran ◽  
Rendi Kurniawan ◽  
Ki Moon Park ◽  
JH Byeon

The applications of carbon fiber reinforced plastic materials have increased widely in the fields of aerospace, automotive, maritime, and sports equipment because of their excellent mechanical properties. Machining of carbon fiber reinforced plastics has a considerably more complex effect on drilling qualities than machining of conventional metals and their alloys due to the nonlinear, inhomogeneous, and abrasive nature of CFRPs. This article addresses the methodologies that have been adopted to minimize the material damages in drilling of polymeric composite materials. Key papers are reviewed with respect to tool types, materials, geometry and coatings, back-up plate, coolants, environment, unconventional machining, and high-speed drilling methodologies, which influence the hole qualities of delamination, burr, surface roughness, cylindricity, diameter error, and thermal damage with the effect of cutting variables (spindle speed and feed rate). In addition, some deburring strategies are also reviewed and discussed.


Sign in / Sign up

Export Citation Format

Share Document