Investigation on Effect of Slide Motion Control on Stamping of High Strength Steel Sheets

2013 ◽  
Vol 554-557 ◽  
pp. 1331-1337 ◽  
Author(s):  
Masato Takamura ◽  
Shigeru Nishimura ◽  
Hideyuki Sunaga

High strength steel sheets are increasingly used in automotive body parts with the aim of weight reduction, but their use urgently requires further improvement in sheet forming technology to overcome difficulties such as poor formability, dimensional inaccuracy, etc. On the other hand, servo press facilities are becoming increasingly used in industry and many attempts are being made to bring out their characteristic features for enhancing the formability of high strength steel sheets. Although some of these attempts have been successful in finding the advantages of servo presses for improving formability and dimensional accuracy, the mechanisms of such improvements have yet to be clarified in conjunction with the mechanical properties of the materials used. One of the most remarkable features of the servo press lies in its flexibility in slide motion control. It is thus effective to investigate the relevance of strain rate sensitivity of a material to the mechanism of improvement in formability enabled by the flexible slide motion of the servo press. However, very few studies have been carried out with material testing, material modeling, and numerical analyses combined with experimental verifications. In this study, Norton’s creep model was implemented in the FEM solver in order to take into account visco-elasto-plastic deformation including stress relaxation behavior. Parameters for the visco-elasto-plastic material model were identified through physical measurements and FEM simulations of uniaxial tension and crosshead displacement dwell tests, as shown in Fig. 1. The identified material model was applied to sheet forming simulations of an automotive body part and validity of the model was examined by comparing with stamping experiments using a servo press with a variety of slide motions. Numerical results with the identified material model showed the same tendency with respect to the slide motions as the experimental results. Stress relaxation behavior was found to be an important factor for improving formability enabled by modifying the slide motion.

2016 ◽  
Vol 725 ◽  
pp. 671-676 ◽  
Author(s):  
Naoko Saito ◽  
Mitsugi Fukahori ◽  
Daisuke Hisano ◽  
Hiroshi Hamasaki ◽  
Fusahito Yoshida

Springback of a high strength steel (HSS) sheet of 980 MPa grade was investigated at elevated temperatures ranging from room temperature to 973 K. From U-and V-bending experiments it was found that springback was decreased with increasing temperature at temperatures of above 573 K. Furthermore, springback was decreased with punch-holding time because of stress relaxation. In this work, the stress relaxation behavior of the steel was experimentally measured. By using an elasto-vicoplasticity model, the stress relaxation was described, and its effect on the springback of sheet metals in warm forming was discussed theoretically.


2013 ◽  
Vol 811 ◽  
pp. 131-134
Author(s):  
Wei Wei Zhang ◽  
Hong Xu

In order to analyze the stress relaxation behavior under repeated loadings for 1Cr-0.5Mo-0.25V steel, a stress relaxation model based on creep equations has been developed. The model was implemented into the ANSYS finite element program in terms of user define material model. The calculated results were compared to the observed results of uniaxial reloading stress relaxation testing, which were performed by the National Research Institute for Metals of Japan (NRIM) for 1Cr-0.5Mo-0.25V stainless steel bolting material at 500°C. It was shown that the proposed model could be applied for the present data. The calculated residual stresses versus time curves were in good agreement with the observed for initial stress level of 297.1MPa at 500°C and for specific reloading time intervals of 24, 72, 240, and 720 hours.


2021 ◽  
Vol 877 ◽  
pp. 83-89
Author(s):  
Aeksuwat Nakwattanaset ◽  
Surasak Suranuntchai

The manufacturing industries for automotive parts aim to develop technologies for reducing vehicle weight in order to decrease fuel consumption. However, passive safety function for drivers and passengers must not be impaired or should be even improved. Therefore, advanced high strength steel sheet plays more and more important role in designing automotive components. Nowadays, prediction of formability for sheet metal stamping has high capability more than the past. The major challenge is springback prediction. Moreover, it assists in the tooling design to correctly compensate for springback. Especially in automotive production, springback effects have been generally exhibited distinct after forming process of the high strength steel sheets. The springback effect occurred in the deformed state of metal parts must be taken into account by designing any sheet metal panels. Then, the purpose of the present research is to investigate the springback phenomenon of an automotive part named Reinforcement Rocker RL made from an advanced high strength steel grade JAC780Y, after stamping. In addition, the tools design has been carried out. Finite Element (FE) program known as DYNAFORM (based on LS-DYNA solver), has been applied to analyze and improve the springback effect on such forming part. An anisotropic material model according to type 36 (MAT_036 3-PARAMETER_BARAT) was applied. The results obtained from simulations were compared with required parts in each section. Then, the die surface from compensation in 2nd step forming was modified to use. Finally, the simulation part was verified with the real stamping part. It was found that the finite element simulation showed high capability for prediction and compensation of springback in high strength steel sheets forming.


Sign in / Sign up

Export Citation Format

Share Document