Experimental and Numerical Machining of AA 5083

2011 ◽  
Vol 189-193 ◽  
pp. 4419-4424
Author(s):  
Behnam Davoodi ◽  
Mohammad Bagher Momeni ◽  
Mohammad Reza Eslami

The experimental machining and finite element modeling of 2D turning of AA5083 is presented. The ABAQUS/Explicit machining simulation software is applied for the finite element modeling. The experimental orthogonal machining for were conducted to investigate the effects of various machining parameters on chip morphology, machined surface condition, and resulting cutting forces. The measured cutting forces was compared to finite element modeling results with good agreement. The effects of cutting speed and rack angle of tool cutting factor for productivity in AA5083 machining, depth of cut, on the peak tool temperature are investigated. 2D Finite Element Model (FEM) of chip formation process, set up with an Arbitrary Lagrangian-Eulerian (ALE) formulation, proposed in the software ABAQUS/Explicit .the thermo-viscoplastic behavior of the workpiece material is modeled by the Johnson-Cook (JC) constitutive law. This study explores the use of experimental and finite element modeling to study the cutting force. Results of this research help to guide the design of new cutting tool materials and coatings and the studies of chip formation to further advance the productivity of AA5083 machining.

Author(s):  
Rui Li ◽  
Albert J. Shih

The finite element modeling and experimental validation of 3D turning of grade two commercially pure titanium are presented. The Third Wave AdvantEdge machining simulation software is applied for the finite element modeling. Machining experiments are conducted. The measured cutting forces and chip thickness are compared to finite element modeling results with good agreement. The effects of cutting speed, a limiting factor for productivity in titanium machining, depth of cut, and tool cutting edge radius on the peak tool temperature are investigated. This study also explores the use of 3D finite element modeling to study the chip curl. Reasonable agreement was observed under turning with small depth of cut. Results of this research help to guide the design of new cutting tool materials and coatings and the studies of chip formation to further advance the productivity of titanium machining.


Author(s):  
Padmaja Tripathy ◽  
Kalipada Maity

This paper presents a modeling and simulation of micro-milling process with finite element modeling (FEM) analysis to predict cutting forces. The micro-milling of Inconel 718 is conducted using high-speed steel (HSS) micro-end mill cutter of 1mm diameter. The machining parameters considered for simulation are feed rate, cutting speed and depth of cut which are varied at three levels. The FEM analysis of machining process is divided into three parts, i.e., pre-processer, simulation and post-processor. In pre-processor, the input data are provided for simulation. The machining process is further simulated with the pre-processor data. For data extraction and viewing the simulated results, post-processor is used. A set of experiments are conducted for validation of simulated process. The simulated and experimental results are compared and the results are found to be having a good agreement.


Author(s):  
Yao Xi ◽  
Michael Bermingham ◽  
Gui Wang ◽  
Matthew Dargusch

The improvement in machinability during thermally assisted turning of the Ti-6Al-4V alloy has been investigated using finite element modeling. A 2D thermally assisted turning model was developed and validated by comparing the simulation results with experimental results. The effect of workpiece temperature on the cutting force and chip formation process was examined. The predicted cutting forces and chip morphologies from the simulation strongly correlated with the experimental results. It was observed from the simulation that the chip forms after the coalescence of two deformed regions in the shear band and that the cyclic cutting forces are strongly related to this chip formation process.


Author(s):  
Monzer Daoud ◽  
Jean-François Chatelain ◽  
Hakim Bouzid

Finite element modeling (FEM) of machining has recently become the most attractive computational tool to predict and optimize metal cutting processes. High speed computers and advanced finite element code have offered the possibility of simulating complex machining processes such as turning, milling, and drilling. The use of an accurate constitutive law is very important in any metal cutting simulation. It is desirable that a constitutive law could completely characterize the thermo-visco-plastic behavior of the machined materials at high strain rate. However, there exist several constitutive laws that are adopted for machining simulation, the choice of which is difficult to make. The most commonly used law is that of Johnson and Cook (JC) which combines the effect of strains, strain rates and temperatures. Unfortunately, the different coefficients provided in the literature for a given material are not reliable since they affect significantly the predicted results (cutting forces, temperatures, etc.). These discrepancies could be attributed to the different methods used for the determination of the material parameters. In the present work, three different sets of JC are determined based on orthogonal machining tests. These three sets are then used in finite element modelling to simulate the machining behavior of Al 2024-T3 alloy. The aim of this work is to investigate the impact of the three different sets of JC constants on the numerically predicted cutting forces, chip morphology and tool-chip contact length. It is concluded that these predicted parameters are sensitive to the material constants.


Author(s):  
T. D. Marusich ◽  
S. Usui ◽  
R. Aphale ◽  
N. Saini ◽  
R. Li ◽  
...  

The three dimensional (3D) finite element modeling (FEM) and experimental validation of drilling are presented. The Third Wave AdvantEdge machining simulation software is applied for the FEM. It includes fully adaptive unstructured mesh generation, thermo-mechanically coupling, deformable tool-chip-workpiece contact, interfacial heat transfer across the tool-chip boundary, and constitutive models appropriate for process conditions and finite deformation analyses. The workpiece is modeled with a predrilled cone-shape blind hole to enable the early full-engagement of the whole drill point region to reduce the simulation time. Drilling experiments are conducted on the Ti-6Al-4V using a twist drill geometry. The calculated cutting force and torque are compared with the results of experiments with good agreement. Effects of process parameters on the stress and temperature distributions of the drill and workpiece are investigated in detail using the FEM.


2012 ◽  
Vol 505 ◽  
pp. 31-36 ◽  
Author(s):  
Moaz H. Ali ◽  
Basim A. Khidhir ◽  
Bashir Mohamed ◽  
A.A. Oshkour

Titanium alloys are desirable materials for aerospace industry because of their excellent combination of high specific strength, lightweight, fracture resistant characteristics, and general corrosion resistance. Therefore, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. The chips are generally classified into four groups: continuous chips, chips with built-up-edges (BUE), discontinuous chips and serrated chips. . The chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The mechanics of segmented chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V are studied in detail with the aid of high-speed imaging of the chip formation zone. The finite element model of chip formation of Ti–6Al–4V is suggested as a discontinuous type chip at lower cutting speeds developing into a continuous, but segmented, chip at higher cutting speeds. The prediction by using finite-element modeling method and simulation process in machining while create chips formation can contribute in reducing the cost of manufacturing in terms of prolongs the cutting tool life and machining time saving.


2011 ◽  
Vol 410 ◽  
pp. 291-297
Author(s):  
Sayed Mohamad Nikouei ◽  
R. Yousefi ◽  
Mohammad Ali Kouchakzadeh ◽  
M.A. Kadivar

Prediction of shear plane angle is a way for prediction of the mechanism of chip formation, machining forces and so on. In this study, Merchant and Lee-Shaffer theories are used for prediction of shear plane angles and cutting forces in machining of Al/SiCpMMC with 20% of SiC as reinforcement particles. The experimental cutting forces are compared with the calculated cutting force based on shear plane angles extracted from Merchant and Lee-Shaffer theories. The variation of these cutting forces with cutting speed, feed rate and depth of cut has been discussed. The results showed that Merchant theory may be used as a good method for prediction of chip formation in machining of Al/SiCpMMC.


2013 ◽  
Vol 274 ◽  
pp. 3-6 ◽  
Author(s):  
Yuan Sheng Zhai ◽  
Xian Li Liu ◽  
Yu Wang

The finite element modeling and experimental validation of three-dimensional heavy cutting of high strength steel (2.25Cr-1Mo-0.25V) are presented. The commercial software Deform 3D applied for the finite element modeling is studied the effect of feed rate on the principal cutting forces and the temperature fields. The friction between the tool and the chip is assumed to follow a shear model and the local adaptive remeshing technique is used for the formation of chip. The feed rate significantly affects the cutting forces, but slightly influences the maximum temperature of the chip. The simulation results are compared with experimental data and found to be in good agreement.


2003 ◽  
Vol 125 (3) ◽  
pp. 324-332 ◽  
Author(s):  
Y. Ohbuchi ◽  
T. Obikawa

A thermo-elastic-plastic finite element modeling of orthogonal cutting with a large negative rake angle has been developed to understand the mechanism and thermal aspects of grinding. A stagnant chip material ahead of the tool tip, which is always observed with large negative rake angles, is assumed to act like a stable built-up edge. Serrated chips, one of typical shapes of chips observed in single grain grinding experiment, form when analyzing the machining of 0.93%C carbon steel SK-5 with a rake angle of minus forty five or minus sixty degrees. There appear high and low temperature zones alternately according to severe and mild shear in the primary shear zone respectively. The shapes of chips depend strongly on the cutting speed and undeformed chip thickness; as the cutting speed or the undeformed chip thickness decreases, chip shape changes from a serrated type to a bulging one to a wavy or flow type. Therefore, there exists the critical cutting speed over which a chip can form and flow along a rake face for a given large negative rake angle and undeformed chip thickness.


Sign in / Sign up

Export Citation Format

Share Document