Change in Electric Field Distribution in Non-Reducing BaTiO3 Based-Dielectric Layer Loaded at High Temperature

2013 ◽  
Vol 566 ◽  
pp. 16-19
Author(s):  
Takafumi Okamoto ◽  
Akira Ando ◽  
Hiroshi Takagi

The electric field distributions in loaded dielectric layers of multilayer ceramic capacitors were investigated at several stages of insulation degradation for the load, using Kelvin probe force microscopy. The electric field distribution was found to be different at each stage of loaded time. Initially, the electric field was concentrated near the cathode, indicating that the insulation resistance near the anode decreased. Then, following the homogeneous distribution shown for an intermediate stage, the electric field eventually concentrated near the anode. This change indicates how insulation degradation occurs locally; this change can plausibly be explained by a hole density increase.

Author(s):  
S. Kremmer ◽  
S. Peissl ◽  
C. Teichert ◽  
F. Kuchar

Abstract Conducting Atomic-Force Microscopy (C-AFM) has a strong potential for the characterization of thin silicon oxides on the nanometer scale. Here we consider difficulties and possible errors that may arise during C-AFM experiments. Using electrostatic simulations it is shown that very sharp tips can cause an inhomogeneous electric field distribution leading to an error in the measured Fowler-Nordheim (FN) current. Further, it is found that a water film, which is ever present under ambient conditions, on the one hand homogenizes the electric field distribution but on the other hand decreases the resolution of the measurements. For increased oxide thickness this water film leads to a ring formation in the electric field maximum and therefore makes an interpretation of FN current maps difficult. The occurrence of protrusions after the applying of voltage pulses and voltage ramps to the sample is investigated by comparing experiments under ambient conditions with measurements in ultra high vacuum (UHV). From this comparison we can conclude that the observed protrusions are real topographic effects, when a water film is present on the surface. However, for UHV experiments on a baked sample it is not yet clear if the protrusions are due to charging effects or due to a reaction with a residual amount of water.


Nano Express ◽  
2021 ◽  
Author(s):  
Cedric Djaou ◽  
Christina villeneuve-faure ◽  
Kremena Makasheva ◽  
Laurent Boudou ◽  
Gilbert Teyssedre

Abstract Dielectric nanocomposite materials are now involved in a large panel of electrical engineering applications ranging from micro-/nano-electronics to power devices. The performances of all these systems are critically dependent on the evolution of the electrical properties of the dielectric parts, especially under temperature increase. In this study we investigate the impact of a single plane of silver nanoparticles (AgNPs), embedded in a thin silica (SiO2) layer close to the surface, on the electric field distribution, the charge injection and the charge dynamic processes for different AgNPs-based nanocomposites and various temperatures in the range 25°C – 110°C. The electrical charges are injected locally by using an Atomic Force Microscopy (AFM) tip and the related surface potential profile is probed by Kelvin Probe Force Microscopy (KPFM). To get deeper in the understanding of the physical phenomena, the electric field distribution in the AgNPs-based nanocomposites is computed by using a Finite Element Modeling (FEM). The results show a strong electrostatic coupling between the AFM tip and the AgNPs, as well as between the AgNPs when the AgNPs-plane is embedded in the vicinity of the SiO2-layer surface. At low temperature (25°C) the presence of an AgNPs-plane close to the surface, i.e., at a distance of 7 nm, limits the amount of injected charges. Besides, the AgNPs retain the injected charges and prevent from charge lateral spreading after injection. At 110°C the amount of injected charge is increased in the nanocomposites compared to low temperatures. Moreover, the speed of lateral charge spreading is increased for the AgNPs-based nanocomposites. These findings imply that the lateral charge transport is favored in the nanocomposite structures by the closely situated AgNPs because of the strong electrostatic coupling between them.


Cerâmica ◽  
2011 ◽  
Vol 57 (344) ◽  
pp. 428-430
Author(s):  
S. M. Gheno ◽  
P. I. Paulin F. ◽  
M. R. Morelli

The BiMeVOX materials appear being high attractive for applications at low temperatures when the ionic conductivity is the determining parameter. The occurrence of many types substitution was confirmed for numerous Me ions, but the greatest interest have been focused on the BiCuVOX materials. The objective of this study was to image the potential barriers in BiCuVOX. The sample was sintered for 4 h at 750 °C and the results show that the high density compound can be obtained. Simultaneously, topography and electric force microscopy (EFM) images are viewed side-by-side. EFM experiments were performed and the results show the maps of the electric field distribution on the surface of BiCuVOX. The formation of potential barrier was observed and the width and intensity were measured.


2017 ◽  
Vol 5 (3) ◽  
pp. 96
Author(s):  
I. Made Yulistya Negara ◽  
Dimas Anton Asfani ◽  
Daniar Fahmi ◽  
Yusrizal Afif

2020 ◽  
Vol 12 ◽  
Author(s):  
Jyoti Katyal ◽  
Shivani Gautam

Background: A relatively narrow LSPR peak and a strong inter band transition ranging around 800 nm makes Al strongly plasmonic active material. Usually, Al nanoparticles are preferred for UV-plasmonic as the SPR of small size Al nanoparticles locates in deep UV-UV region of the optical spectrum. This paper focused on tuning the LSPR of Al nanostructure towards infrared region by coating Au layer. The proposed structure has Au as outer layer which prevent the further oxidation of Al nanostructure. Methods: The Finite Difference Time Domain (FDTD) and Plasmon Hybridization Theory has been used to evaluated the LSPR and field enhancement of single and dimer Al-Al2O3-Au MDM nanostructure. Results: It is observed that the resonance mode show dependence on the thickness of Al2O3 layer and also on the composition of nanostructure. The Au layered MDM nanostructure shows two peak of equal intensities simultaneously in UV and visible region tuned to NIR region. The extinction spectra and electric field distribution profiles of dimer nanoparticles are compared with monomer to reveal the extent of coupling. The dimer configuration shows higher field enhancement ~107 at 1049 nm. By optimizing the thickness of dielectric layer the MDM nanostructure can be used over UV-visible-NIR region. Conclusion: The LSPR peak shows dependence on the thickness of dielectric layer and also on the composition of nanostructure. It has been observed that optimization of size and thickness of dielectric layer can provide two peaks of equal intensities in UV and Visible region which is advantageous for many applications. The electric field distribution profiles of dimer MDM nanostructure enhanced the field by ~107 in visible and NIR region shows its potential towards SERS substrate. The results of this study will provide valuable information for the optimization of LSPR of Al-Al2O3-Au MDM nanostructure to have high field enhancement.


Sign in / Sign up

Export Citation Format

Share Document