Effect of Ferroelectric Domain on Fatigue Fracture Behavior in Piezoelectric Ceramics

2013 ◽  
Vol 566 ◽  
pp. 3-6
Author(s):  
Motonori Nakamura ◽  
Chiharu Sakaki ◽  
Masahiko Kimura ◽  
Takehiro Konoike ◽  
Hiroshi Takagi ◽  
...  

Fatigue tests on lead zirconate titanate (PZT) were performed by using single-edge-V-notched specimens under cyclic mechanical loading with or without superposition of a DC electric field. Fatigue life was prolonged by applying a DC electric field to the PZT ceramics. To estimate the domain contribution, fatigue tests on barium strontium titanate (BST) ceramics in both ferroelectric and paraelectric phase were carried out. The fatigue life of the ferroelectric phase was much shorter than that of the paraelectric phase. Comparing the fatigue lives of two PZT ceramics with different values of coercive electric field (Ec) revealed that the fatigue life of the PZT with higher Ec is about one order of magnitude longer than that with lower Ec when the stress-intensity factor of fatigue test is low. It is therefore concluded that non-180°domain switching probably deteriorates the fatigue life of ferroelectric ceramics.

1999 ◽  
Vol 14 (7) ◽  
pp. 2940-2944 ◽  
Author(s):  
Fei Fang ◽  
Wei Yang ◽  
Ting Zhu

Lanthanum-modified lead zirconate titanate ferroelectric ceramics (Pb0.96La0.04)(Zr0.40Ti0.60)0.99O3 were synthesized by the conventional powder processing technique. X-ray diffraction experiments revealed that the samples belong to the tetragonal phase with a = b = 0.4055 nm, c = 0.4109 nm, and c/a = 1.013. After being poled, the samples were indented with a 5-kg Vickers indenter, and lateral electric fields of 0.4 Ec, 0.5 Ec, and 0.6 Ec (Ec = 1100 V/mm) were applied, respectively. Field-emission scanning electron microscopy showed that 90° domain switching appeared near the tip of the indentation crack under a lateral electric field of 0.6 Ec. A mechanism of 90° domain switching near the crack tip under an electric field is discussed.


2001 ◽  
Vol 16 (8) ◽  
pp. 2306-2313 ◽  
Author(s):  
Shan Wan ◽  
Keith Bowman

Preferred domain orientation of a piezoelectric ceramic develops through domain switching under electric poling. In previous investigations the critical free energy required for domain switching has been assumed as a constant. This assumption leads to overestimation of the poling-induced texture and provides no explanation for the switching reversal in ferroelectric ceramics after the poling field is removed. In this paper, the contribution of intergranular stress to critical energy for 90° domain switching is investigated. A criterion including intrinsic threshold energy and an interaction energy, which is related to the intergranular stress and the intergranular depolarization field, is proposed. The texture evolution during poling process is simulated using a computational model starting from an initial random domain orientation distribution. The resulted domain orientation distributions under and after poling are predicted. The remanent domain switching after poling is the result of the balance between the interaction energy and intrinsic threshold energy. The final texture is much weaker than that under the electric field. Pole figures of poled Navy VI lead zirconate titanate measured by x-ray diffraction are consistent with the predicted textures.


2016 ◽  
Vol 06 (03) ◽  
pp. 1650019 ◽  
Author(s):  
V. M. Ishchuk ◽  
D. V. Kuzenko

The paper presents results of experimental study of the dielectric constant relaxation during aging process in Pb(Zr,Ti)O3based solid solutions (PZT) after action of external DC electric field. The said process is a long-term one and is described by the logarithmic function of time. Reversible and nonreversible relaxation process takes place depending on the field intensity. The relaxation rate depends on the field strength also, and the said dependence has nonlinear and nonmonotonic form, if external field leads to domain disordering. The oxygen vacancies-based model for description of the long-term relaxation processes is suggested. The model takes into account the oxygen vacancies on the sample's surface ends, their conversion into [Formula: see text]- and [Formula: see text]-centers under external effects and subsequent relaxation of these centers into the simple oxygen vacancies after the action termination. [Formula: see text]-centers formation leads to the violation of the original sample's electroneutrality, and generate intrinsic DC electric field into the sample. Relaxation of [Formula: see text]-centers is accompanied by the reduction of the electric field, induced by them, and relaxation of the dielectric constant, as consequent effect.


2004 ◽  
Vol 19 (3) ◽  
pp. 834-842 ◽  
Author(s):  
Dayu Zhou ◽  
Marc Kamlah ◽  
Dietrich Munz

The influence of uniaxial prestress on dielectric and piezoelectric performance was studied for soft lead zirconate titanate piezoceramics. High electric field induced polarization and longitudinal/transverse strain were measured at different compression preload levels of up to −400 MPa. The parameters evaluated included polarization/strain outputs, dielectric permittivity, piezoelectric constants, and dissipation energy as a function of the mechanical preload and electric-field strength. The results indicate a significant enhancement of the dielectric and piezoelectric performance within a certain prestress loading range. At much higher stress levels, the predominant mechanical depolarization effect makes the material exhibit hardly any piezoeffect. However, the enhanced performance achieved by a small stress preload is accompanied by an unfavorable increased hysteresis, and consequently, increased energy loss, which is attributed to a larger extrinsic contribution due to more non-180° domain switching induced by the combined electromechanical load.


2007 ◽  
Vol 345-346 ◽  
pp. 1521-1524 ◽  
Author(s):  
Mamoru Mizuno ◽  
Nozomi Odagiri ◽  
Mitsuhiro Okayasu

In the present paper, lead zirconate titanate (PZT) and lead titanate (PT) piezoelectric ceramics were subjected to both high electric field (which is higher than the coercive electric field) with low frequency and low electric field with high frequency (which is the resonance frequency). After applying certain electric field systematically, resonance and anti-resonance frequencies and an electrostatic capacity were measured by means of an impedance analyzer, and an electromechanical coupling coefficient, a dielectric constant, an elastic coefficient and a piezoelectric constant were evaluated from the frequencies and capacity measured. Then variation of the material properties in process of time was investigated experimentally, and the dependence of the variation of the properties due to mainly domain switching on conditions of applied electric field was elucidated.


2016 ◽  
Vol 675-676 ◽  
pp. 509-512 ◽  
Author(s):  
Pichitchai Butnoi ◽  
Pratthana Intawin ◽  
Ploypailin Yongsiri ◽  
Nuttapon Pisitpipathsin ◽  
Puttapon Pengpad ◽  
...  

The ferroelectric ceramics with composition of (1-x)Pb(Zr0.52Ti0.48O3 [PZT] – x(Ba0.9Ca0.1)(Ti0.85Zr0.15)O3 [BCZT] (x = 0, 0.04, 0.08 and 0.10 ) have been successfully prepared via two-step mixed oxide method. The material systems of lead zirconate titanate (PZT) and barium calcium zirconate titanate (BCZT) have been intensive studied due to their remarkable properties of high ferroelectric and piezoelectric values. In this work, we are interesting to combine PZT with BCZT system in order to improve the electrical property of the ceramic samples. From the obtained results, it can be confirmed that ferroelectric values are significant increased with the optimum amount of the BCZT.


2015 ◽  
Vol 05 (04) ◽  
pp. 1550036 ◽  
Author(s):  
V. M. Ishchuk ◽  
D. V. Kuzenko

Results of experimental investigation of relaxation aging processes in Pb(Zr,Ti)O3-based solid solutions after termination of external actions are presented. Heating, DC electric field, uniaxial pressure and some of their combinations were taken as external actions. In the main part of the present paper, we use heating as external action. The said processes are long-time one and are described by the logarithmic function of time.Reversible and nonreversible relaxation processes take place depending on the action intensity. The relaxation rate depends on the action intensity also, and the said dependence has nonlinear and nonmonotonic form if external action leads to domain disordering.The oxygen vacancies-based model for description of the long-time relaxation processes is suggested. The model takes into account oxygen vacancies on the sample’s surface ends, their conversion into [Formula: see text]- and [Formula: see text]-centers under external effects (due to the liberation of the pyroelectric charge) and subsequent relaxation of these centers into the simple oxygen vacancies after the actions termination. The initial sample’s state is electroneutrality one. F-center formation leads to the violation of the original sample’s electroneutrality, and generates DC electric field into the sample. Relaxation of F-centers is accompanied by decreasing of electric field, induced by them, and dielectric constant relaxation as consequent effect.


Sign in / Sign up

Export Citation Format

Share Document