Variation of Material Properties of Piezoelectric Ceramics due to Electric Loading Evaluated by Resonance Frequency

2007 ◽  
Vol 345-346 ◽  
pp. 1521-1524 ◽  
Author(s):  
Mamoru Mizuno ◽  
Nozomi Odagiri ◽  
Mitsuhiro Okayasu

In the present paper, lead zirconate titanate (PZT) and lead titanate (PT) piezoelectric ceramics were subjected to both high electric field (which is higher than the coercive electric field) with low frequency and low electric field with high frequency (which is the resonance frequency). After applying certain electric field systematically, resonance and anti-resonance frequencies and an electrostatic capacity were measured by means of an impedance analyzer, and an electromechanical coupling coefficient, a dielectric constant, an elastic coefficient and a piezoelectric constant were evaluated from the frequencies and capacity measured. Then variation of the material properties in process of time was investigated experimentally, and the dependence of the variation of the properties due to mainly domain switching on conditions of applied electric field was elucidated.

2000 ◽  
Author(s):  
Shan Wan ◽  
Keith J. Bowman

Abstract Piezoelectricity is strongly dependent on the preferred domain orientation. A fiber-like texture of a Navy VI Lead Zirconate Titanate (PZT) piezoelectric ceramic can be induced by electric poling. This texture can be further changed and strengthened by cross-poling, that is, applying a strong electrical field perpendicular to the original poling direction. In this paper we show preferred domain orientation changes and anisotropy transitions associated with poling and cross-poling in PZT piezoelectric ceramic. The poling and cross-poling induced textures can be explained by three-dimensional orientation dependent domain switching. Based on this discussion, we demonstrate that it is possible to tailor the preferred domain orientation distribution and improve anisotropic properties of piezoelectric ceramics by directional control of the 90° domain switching using cross-poling.


2004 ◽  
Vol 19 (3) ◽  
pp. 834-842 ◽  
Author(s):  
Dayu Zhou ◽  
Marc Kamlah ◽  
Dietrich Munz

The influence of uniaxial prestress on dielectric and piezoelectric performance was studied for soft lead zirconate titanate piezoceramics. High electric field induced polarization and longitudinal/transverse strain were measured at different compression preload levels of up to −400 MPa. The parameters evaluated included polarization/strain outputs, dielectric permittivity, piezoelectric constants, and dissipation energy as a function of the mechanical preload and electric-field strength. The results indicate a significant enhancement of the dielectric and piezoelectric performance within a certain prestress loading range. At much higher stress levels, the predominant mechanical depolarization effect makes the material exhibit hardly any piezoeffect. However, the enhanced performance achieved by a small stress preload is accompanied by an unfavorable increased hysteresis, and consequently, increased energy loss, which is attributed to a larger extrinsic contribution due to more non-180° domain switching induced by the combined electromechanical load.


1996 ◽  
Vol 18 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Wenkang Qi ◽  
Wenwu Cao

Finite element method (FEA) has been used to calculate the thickness resonance frequency and electromechanical coupling coefficient kt for 2–2 piezocomposite transducers. The results are compared with that of the effective medium theory and also verified by experiments. It is shown that the predicted resonance frequencies from the effective medium theory and the unit cell modeling using FEA deviate from the experimental observations for composite systems with a ceramic aspect ratio (width/length) more than 0.4. For such systems, full size FEA modeling is required which can provide accurate predictions of the resonance frequency and thickness coupling constant kt.


1999 ◽  
Vol 14 (7) ◽  
pp. 2940-2944 ◽  
Author(s):  
Fei Fang ◽  
Wei Yang ◽  
Ting Zhu

Lanthanum-modified lead zirconate titanate ferroelectric ceramics (Pb0.96La0.04)(Zr0.40Ti0.60)0.99O3 were synthesized by the conventional powder processing technique. X-ray diffraction experiments revealed that the samples belong to the tetragonal phase with a = b = 0.4055 nm, c = 0.4109 nm, and c/a = 1.013. After being poled, the samples were indented with a 5-kg Vickers indenter, and lateral electric fields of 0.4 Ec, 0.5 Ec, and 0.6 Ec (Ec = 1100 V/mm) were applied, respectively. Field-emission scanning electron microscopy showed that 90° domain switching appeared near the tip of the indentation crack under a lateral electric field of 0.6 Ec. A mechanism of 90° domain switching near the crack tip under an electric field is discussed.


2011 ◽  
Vol 22 (16) ◽  
pp. 1879-1886 ◽  
Author(s):  
Clark Andrews ◽  
Yirong Lin ◽  
Haixiong Tang ◽  
Henry A. Sodano

Piezoelectric ceramics offer exceptional sensing and actuation properties, however, they are prone to breakage and are difficult to apply to curved surfaces in their monolithic form. One method to alleviate these issues is through the use of 0–3 active composites, which are formed by embedding piezoelectric particles into a polymer matrix that protects the ceramic from breaking under mechanical loading. This class of material offers certain advantages over monolithic materials; however, they have seen little use due to the low electromechanical coupling offered by these materials. Here, we demonstrate that by controlling the aspect ratio of the filler, the electromechanical coupling coefficient can be significantly improved. For all volume fractions tested, nanocomposites with high aspect ratio lead nanowires filler had higher coupling with increases as large as 2.3 times. Furthermore, the nanocomposite’s coupling was more than 50% of the piezoceramic fillers’ when nanowires were used.


2020 ◽  
Vol 225 ◽  
pp. 04012
Author(s):  
JY. Ferrandis ◽  
O. Gatsa ◽  
P. Combette ◽  
D. Fourmentel ◽  
C. Destouches ◽  
...  

In this article we present a first part of the results obtained during an irradiation campaign conducted at the Jozef Stefan Institute to observe the behaviour of piezoelectric materials under gamma and neutron flux. Specific instrumentation has been developed and has enabled the monitoring throughout the irradiation of several materials such as lead zirconate titanate (PZT) or modified Bismuth Titanate (BiT) in either massive or thick film form. Various parameters such as resonance frequency, electromechanical coupling coefficient, electrical capacitance, dielectric losses were measured as a function of the flow and dose received. The results obtained confirm that the samples work up to doses of 10 18 n°/cm2 and that the behaviour of the samples varies according to their composition and form.


Sign in / Sign up

Export Citation Format

Share Document