scholarly journals A Multiaxial Notch Fatigue Methodology to Estimate In-Service Lifetime of Corroded Cast Iron Water Pipes

2013 ◽  
Vol 577-578 ◽  
pp. 125-128
Author(s):  
W. Brevis ◽  
Luca Susmel ◽  
J.B. Boxall

The present paper summarises an attempt of using the so-called Modified Wöhler Curve Method (MWCM) to estimate fatigue damage in pitted cast iron water pipes subjected to in-service variable amplitude multiaxial fatigue loading. In this setting, pits are treated as hemispherical/hyperbolic notches whose depth increases over time due to conventional corrosion processes taking places in buried cast-iron pipes. The validity of such an approach is proven by showing, through a case study, that, under particular circumstances, the combined effect of corrosion and fatigue can remarkably shorten the in-service lifetime of cast-iron pipes as observed in the case study.

2011 ◽  
Vol 488-489 ◽  
pp. 747-750 ◽  
Author(s):  
Luca Susmel ◽  
David Taylor

The present paper is concerned with the use of the Modified Wöhler Curve Method (MWCM), applied in terms of nominal stresses, to estimate lifetime of notched components subjected to variable amplitude multiaxial fatigue loading. The MWCM is applied by defining the critical plane through that direction experiencing the maximum variance of the resolved shear stress: since the shear stress resolved along the above direction is a monodimensional quantity, fatigue cycles are directly counted by the classical Rain-Flow method. The performed validation exercise, based on an extensive experimental investigation, seems to strongly support the idea that the MWCM applied along with the classical nominal stress based approach is capable of accurately estimating fatigue damage also in notched components subjected to variable amplitude multiaxial load histories.


2019 ◽  
Vol 300 ◽  
pp. 17004
Author(s):  
K.G. F. Janssens

None of the procedures for cycle-counting defined in the ASTM document with designation E1049-85 (Reapproved 2017) [1] are generally applicable to non-proportional, multi-axial Fatigue. In addition, as the concepts of amplitude and mean stress are defined per cycle, their values are dependent (or co-define) the cycle counting method. This poses an obvious problem to the analysis of non-proportional, multi-axial fatigue damage, as lifetime is, not in all but in many cases, an amplitude and mean stress dependent material property. Most of the newer cycle counting methods developed till date are at least inspired by the works of Wang & Brown [2] and of Bannantine & Socie [3], both of which are themselves still frequently used. Being built inspired by counting methods developed for uniaxial cycling, all of the approaches to date known to this author are limited in a way that is very well phrased by Anes et al [4], whom, on page 79 of their article, write that (quote): The damage criterion is the base stone to set up random fatigue. The damage parameter must capture the fatigue damage behavior to allow set up a cycle counting method and an accumulation model. Challenging this statement, a new cycle counting procedure is presented that is completely independent of the damage criterion, and universally works from the simplest uniaxial experiment, to the most complex, variable amplitude and frequency, non-proportional multiaxial fatigue loading. The definition of this new cycle counting concept is surprisingly simple. Despite of its simplicity, the new cycle counting procedure has different advantages when compared to the procedures known to date. Its standalone definition, allows it to be combined with any damage criterion. It does not require periodicity of the loading cycle, and can therefore be straightforwardly used to analyze variable frequency and amplitude, multiaxial fatigue loading.


2019 ◽  
Vol 300 ◽  
pp. 13004
Author(s):  
Namiq Zuhair Faruq ◽  
Luca Susmel

The present paper deals with the formulation and implementation of a novel fatigue lifetime estimation technique suitable for designing notched components against multiaxial fatigue. This fatigue assessment procedure was devised by combining the Modified Manson-Coffin Curve Method and the Shear Strain-Maximum Variance Method with the elasto-plastic Point Method. The accuracy of the approach being proposed was checked against a large number of experimental results that were generated by testing notched cylindrical samples of medium-carbon steel En8. These tests were run under proportional/non-proportional constant/variable amplitude biaxial loading, with the effect of non-zero mean stresses and different frequencies between the axial and torsional stress/strain components being also investigated. The results from this validation exercise demonstrate that the novel multiaxial fatigue assessment methodology being proposed is highly accurate, with its systematic usage resulting in predictions falling within an error factor of 2. This remarkable level of accuracy is very promising especially in light of the fact that this approach can be applied by directly post-processing the results from elasto-plastic Finite Element (FE) models solved using commercial codes.


2012 ◽  
Vol 26 (11) ◽  
pp. 3439-3446 ◽  
Author(s):  
Hong Chen ◽  
De-Guang Shang ◽  
Yu-Jie Tian ◽  
Jian-Zhong Liu

1996 ◽  
Vol 118 (3) ◽  
pp. 367-370 ◽  
Author(s):  
C. H. Wang ◽  
M. W. Brown

Fatigue life prediction under multiaxis random loading is an extremely complex and intractable topic; only a few methods have been proposed in the literature. In addition, experimental results under multiaxis random loading are also scarce. In part one of this two-part paper, a multiaxial non-proportional cycle counting method and fatigue damage calculation procedure are proposed, which is compared with one published damage-searching method. Both theories are based on critical plane concepts, one being an extension of the local strain approach for uniaxial variable amplitude loading and the other employing a new counting algorithm for multiaxis random loading. In principle, these two methods can be considered as bounding solutions for fatigue damage accumulation under multiaxis random loading.


2021 ◽  
pp. 073168442199588
Author(s):  
Sepideh Aghajani ◽  
Mohammadreza Hemati ◽  
Shams Torabnia

Wind turbine blade life prediction is the most important parameter to estimate the power generation cost. Due to the price and importance of wind blade, many experimental and theoretical methods were developed to estimate damages and blade life. A novel multiaxial fatigue damage model is suggested for the life prediction of a wind turbine blade. Fatigue reduction of fiber and interfiber characteristics are separately treated and simulated in this research. Damage behavior is considered in lamina level and then extended to laminate; hence, this model can be used for multidirectional laminated composites. The procedure of fatigue-induced degradation is implemented in an ABAQUS user material subroutine. By applying the fatigue damage model, life is estimated by the satisfaction of lamina fracture criteria. This model provides a comprehensive idea about how damage happens in wind blades regarding a multi-axis fatigue loading condition.


Sign in / Sign up

Export Citation Format

Share Document