Influence of Laser Hardening to the Sliding Wear Resistance of the PVD (Al,Ti)N-G and nACo® Coatings

2014 ◽  
Vol 604 ◽  
pp. 28-31 ◽  
Author(s):  
Andrei Surzhenkov ◽  
Eron Adoberg ◽  
Maksim Antonov ◽  
Fjodor Sergejev ◽  
Valdek Mikli ◽  
...  

In the present article, the laser hardening of the carbon steel C45, previously coated by the physical vapour deposition (PVD) process, is studied. The (Al,Ti)N-G and nACo® (nc-AlxTi1-xN/α-Si3N4) coatings were applied. Nd:YAG laser with the laser beam power density of 1945 W/cm2 and scan speed of 300 mm/min was used for hardening process. Laser hardening lead to the formation of hardened layer under both coatings, consisting of austenite and ferrite. The approximate depth of the hardened layer and maximal microhardness was approximately 0.2 mm and 955 HV0.05 and 0.1 mm and 520 HV0.05 in the case of the (Al,Ti)N-G and the nACo® coating, respectively. After laser hardening the sliding wear of the (Al,Ti)N-G coating decreased by 1.25 times and of the nACo® coating by 1.05 times.

Author(s):  
Sukhinderpal Singh ◽  
Jasmaninder Singh Grewal

This study has been made to limit the sliding wear by employing advanced protective nano coatings by using DC magnetron sputtering Physical Vapour Deposition technique. Three advanced nano coatings viz. Diamond-Like Carbon (DLC), composite AlCrN coating and AlCrN/TiAlN multilayered coatings were selected for present work due to their enviable wear resistant characteristics. Coatings were deposited on AISI-D2 die steel by traditional DC magnetron sputtering physical vapour deposition technique. The as deposited coatings were characterized with surface roughness, microhardness, porosity and microstructure. The X-Ray Diffraction (XRD) and field mission scanning electron microscope (FESEM with EDAX) techniques have been used to describe various phases established after coating deposited on the surface of the substrate. Subsequently, sliding wear and friction tests were conducted in accordance with ASTM standard G99-03, under scrutiny variation of load and time and at constant sliding speed. Cumulative wear volume loss and coefficient of friction were formulated for coated as well as uncoated/tempered specimen at a constant speed of 1 m/s and varying load of 25N and 50N. The results from experimentation were analysed with SEM micrographs and Energy dispersive spectrum to analyse the adaptability of coating for base materials, wear behaviour and friction behaviour of coated and uncoated/tempered substrates. The results have shown adaptability of advance nano-coatings for AISI D2 die steel. The generation of oxide layer during wear process provides wear resistance to the AlCrN-based coatings. No thermal instability has been observed in nano-coatings at low temperature generated while experimentation and that is under working range of cold forming processes. It is observed that there is relevant decrease in frictional force by the application of DLC coatings while AlCrN/TiAlN has provided much better wear resistance.


2018 ◽  
Vol 911 ◽  
pp. 44-48 ◽  
Author(s):  
Ornsurang Netprasert ◽  
Viboon Tangwarodomnukun ◽  
Chaiya Dumkum

Unlike the conventional heat treatments, laser hardening process can selectively and locally harden the workpiece surface with minimum part distortion, thus making the process suitable for small or thin workpieces. To elucidate a better understanding of process performance, this paper presents an investigation of laser hardening process for AISI 420 martensitic stainless steel. A nanosecond pulse laser was used as a heat source to harden the metal surface. The effects of laser power scan overlap and scan speed on micro-hardness and case depth were experimentally examined. The results revealed that the micro-hardness of stainless steel surface increased from 242 HV to 1700 HV without any sign of surface melting. The depth of hardened layer was found to be 60-80 µm depending on laser power, scan speed and scan overlap applied. In addition, the scan overlap of 50% was recommended to lessen the deviation of micro-hardness across the laser-scanned area.


2010 ◽  
Vol 97-101 ◽  
pp. 1497-1501 ◽  
Author(s):  
Hao Sun ◽  
Gang Ling ◽  
Hong Wen Li ◽  
Yan Bo Su ◽  
Shao Ping Xiong ◽  
...  

The microstructure and properties of hardened layer of 45 steel disk opener with a variety of parameters of HLD1001.5 solid-state laser were studied by SEM, Rockwell hardness tester and wear tester. The results showed that under the conditions of the laser power from 400W to 600W, the hardened layer is composed of melted zone, phase transformation zone and heat affected zone, and the hardness is up to 58.5-61HRC, and the disk openers have excellent wear resistance after the laser hardening, which is best in the disk opener with the treatment of laser power 500W.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 571 ◽  
Author(s):  
Naser Ali ◽  
Joao Teixeira ◽  
Abdulmajid Addali ◽  
Maryam Saeed ◽  
Feras Al-Zubi ◽  
...  

This study demonstrates an electron beam physical vapour deposition approach as an alternative stainless steel thin films fabrication method with controlled layer thickness and uniform particles distribution capability. The films were fabricated at a range of starting electron beam power percentages of 3–10%, and thickness of 50–150 nm. Surface topography and wettability analysis of the samples were investigated to observe the changes in surface microstructure and the contact angle behaviour of 20 °C to 60 °C deionised waters, of pH 4, pH 7, and pH 9, with the as-prepared surfaces. The results indicated that films fabricated at low controlled deposition rates provided uniform particles distribution and had the closest elemental percentages to stainless steel 316L and that increasing the deposition thickness caused the surface roughness to reduce by 38%. Surface wettability behaviour, in general, showed that the surface hydrophobic nature tends to weaken with the increase in temperature of the three examined fluids.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1130 ◽  
Author(s):  
Aneta Bartkowska

The paper presents the study results of laser remelting diffusion boronized layers produced on CT90 tool steel. A diffusion boronized layer was produced at 950 °C in a powder mixture containing boron carbide as a source of boron. A needle-like microstructure of iron boride was obtained. After diffusion boronizing, the specimens were subjected to laser processing, which was carried out using a diode laser with a nominal power of 3 kW. Three laser beam power values were applied (600, 900, and 1200 W). The aim of the study was to investigate the microstructure, microhardness, chemical, and phase composition as well as the wear and corrosion resistance of newly formed FeB-Fe2B-Fe3(B,C) layers. As a result of the laser beam interaction, the needle-like borides occurring in the subsurface zone were remelted, and three characteristic areas were obtained: the remelted zone, the heat-affected zone, and the substrate. The properties of newly formed layers have improved in comparison to diffusion boronized layers (except for corrosion resistance). It should be noted that using the highest laser beam power contributed to a slight reduction in wear resistance. Both the reduced corrosion and wear resistance were caused by greater remelting of the steel substrate and thus by the increased iron content in the formed layer.


2013 ◽  
Vol 203-204 ◽  
pp. 198-203 ◽  
Author(s):  
Tomasz Tański ◽  
Krzysztof Labisz ◽  
Janusz Szewczenko

Thin films and coatings are applied to engineering materials in order to improve the mechanical properties of the surface, such as wear resistance, corrosion resistance and hardness. This research work deals with coatings deposited by appliance of the Physical Vapour Deposition method (PVD). The presented instigations concerning the production of coatings are one of the present important directions connected with modern surface engineering, ensuring the obtainment of coatings of high usable properties like mechanical characteristics and wear resistance. The general purpose of this work is investigation and evaluation of the obtained Ti/(Ti,Si)N/(Ti,Si)N coatings on magnesium cast alloys using electron microscope as the main investigation tool. The investigations were performed using scanning and transmission electron microscopy for the microstructure determination, also EDS microanalysis and electron diffraction was possible to obtain. While investigating the coating material, there were studied the transition zone between the coating and the substrate material as well the occurrence of some structure defects which can be present after the deposition process and could have any influence of the properties of the achieved coating. Also the structure character will be investigated for the occurrence of the nanostructure coatings, which could be seen as the solution of this issue. In the present work, the goal is set on current practices and future trends for nanocomposite thin films and coatings deposited by physical vapour deposition (PVD) technique. This investigation will touch some aspects of such coatings, but the main objective is to give a general view on features revealed using electron microscopy application in PVD coating investigations.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 608
Author(s):  
Aneta Bartkowska ◽  
Dariusz Bartkowski ◽  
Damian Przestacki ◽  
Jakub Hajkowski ◽  
Andrzej Miklaszewski

The paper presents study results focused on the microstructural, mechanical, and physicochemical properties of B-Cr coatings obtained by means of modification of diffusion borochromized layers by diode laser beam. The studies were conducted on 145Cr6 tool steel. Diffusion borochromized layers were produced at 950 °C in powder mixture containing boron carbides as a source of boron and ferrochrome as a source of chromium. In the next step these layers were remelted using laser beam. Powers: 600, 900, and 1200 W were used during these processes. The microstructure, microhardness, chemical composition, as well as wear and corrosion resistance of newly-formed B-Cr coatings were determined. As a result of laser beam interaction, the diffusion borochromized layer was mixed with the steel substrate. The study showed that too low laser beam power causes cracks in the newly formed B-Cr coating, and on the other hand, too higher laser beam power causes deep remelting resulting in the loss of microhardness. The reduced corrosion resistance in comparison with diffusion borochromized layers was caused by occurrence cracks or deep remelting. For B-Cr coatings produced using laser beam power 600 W, a small decrease in wear resistance was observed, but note that this coating was much thicker than diffusion borochromized layers. On the other hand, laser beam power of 1200 W caused a significant decrease in wear resistance. Newly formed B-Cr coatings had an advantageous microhardness gradient between the layer and the substrate.


2007 ◽  
Vol 539-543 ◽  
pp. 1194-1199 ◽  
Author(s):  
Wolfgang Tillmann ◽  
Evelina Vogli ◽  
Jan Nebel

Multifunctional coatings open new dimensions due to a combination of properties like high friction and wear resistance, electrical attributes, heat or corrosion protection in one system. In this study multifunctional coatings for in-situ temperature measurements on cutting inserts as well as multilayer coatings have been investigated. Corresponding metallurgical analyses together with mechanical tests are presented.


Sign in / Sign up

Export Citation Format

Share Document