Translucence Study through New Experimental Hybrid Composites

2014 ◽  
Vol 614 ◽  
pp. 148-154
Author(s):  
Ovidiu Cristian Pastrav ◽  
Ada Gabriela Delean ◽  
Codruta Sarosi ◽  
Laura Silaghi Dumitrescu ◽  
Alexandrina Muntean ◽  
...  

Translucence parameters for 3 series of experimental hybrid composites were investigated using three-chromatic coordinates such as L* a* b* CHROMA technique using a type C illuminant geometry with the scope of 8o. The materials of each series contain in the same ratio different copolymers and a filler mixture (simple and mixed hydroxyapatite-ZrO2 or SiO2 powders and glass powders with barium oxide, respective strontium oxide, or quartz powder). The purpose was to determine the effect of filler composition of composites on translucence. The analysis shows that these materials have more or less translucence. CHROMA determinations indicate that for the composite that has as filler quartz microparticles anh hydroxyapatite nanoparticles, the translucence registered is higher. Results leading to the idea that chemical composition and the size of inorganic phase are important to obtain translucent composite materials that have very natural in appearance. Keywords: translucence, hybrid composites, CHROMA method.

Author(s):  
Sri Sai P. Reddy ◽  
Rohan. Suresh ◽  
Hanamantraygouda. M.B. ◽  
B.P. Shivakumar

2015 ◽  
Vol 27 (7) ◽  
pp. 381-387 ◽  
Author(s):  
Jie Zhang ◽  
Chenchen Gong ◽  
Shoude Wang ◽  
Lingchao Lu ◽  
Xin Cheng

2021 ◽  
Vol 2089 (1) ◽  
pp. 012033
Author(s):  
M Sadashiva ◽  
S Praveen Kumar ◽  
M K Yathish ◽  
V T Satish ◽  
MR Srinivasa ◽  
...  

Abstract The extensive applications of hybrid composite materials in the field of transportation and structural domine provide prominent advantages in the order of stiffness, strength even cost. However extend the advantages of hybrid campsites in several field such as aviation and marine even more additional properties should be inculcate in them. During production of such profitable composites poses some problems at time at decompose and processing. It’s better to develop environment friendly and reusable composites, bio hybrid composite materials such of the one. In this paper, focused on development of Eco-friendly hybrid bio composites with the ingredients of drumstick fibers, glass fiber along with polyester resin. This hybrid bio composites subjected to bending test and evaluate the characteristics of bending properties, this research evident that bending characteristics of hybrid composites with longitudinal fiber orientation better than transverse.


Author(s):  
Mehran Tehrani ◽  
Ayoub Y. Boroujeni ◽  
Majid Manteghi ◽  
Zhixian Zhou ◽  
Marwan Al-Haik

Electromagnetic (EM) waves, such as electronic noise and radio frequency interference can be regarded as an invisible electronic pollution which justifies a very active quest for effective electromagnetic interference (EMI) shielding materials. Highly conductive materials of adequate thickness are the primary solutions to shield against EMI. Equipment cases and basic structure of space aircraft and launch vehicles have traditionally been made of aluminum, steel and other electrically conductive metals. However, in recent years composite materials have been used for electronic equipment manufacturing because of their lightweight, high strength, and ease of fabrication. Despite these benefits, composite materials are not as electrically conductive as traditional metals, especially in terms of electrical grounding purposes and shielding. Therefore, extra effort must be taken to resolve these shortcomings. The present work demonstrates a study on developing hybrid composites based on fiberglass with surface grown carbon nanotubes (CNTs) for EMI applications. The choice of fiberglass is primarily because it naturally possesses poor electrical conductivity, hence growing CNTs over glass fiber surface can significantly improve the conductivity. The fabrics were sputter-coated with a thin layer of SiO2 thermal barrier prior to growing of CNTs. The CNTs were grown on the surface of woven fiberglass fabrics utilizing a relatively low temperature technique. Raw fiberglass fabric, SiO2 coated fabric, and SiO2 coated fabric which was subjected to the identical heat treatment as the samples with CNTs were also prepared. Two-layers composite specimens based on different surface treated fiberglass fabrics were fabricated and their EMI shielding effectiveness (SE) was measured. The EMI SE of the hybrid CNT-fiberglass composites was shown to be 5–10 times of the reference samples. However, the tensile mechanical properties of the composites based on the different above mentioned fibers revealed significant degradation due to the elevated CNT growth temperature and the addition of coating layer and CNTs. To further probe the structure of the hybrid composites and the inter-connectivity of the CNTs from one interface to another, sets of 20-layers composites based on different surface treated fabrics were also fabricated and characterized.


2017 ◽  
Vol 52 (9) ◽  
pp. 1183-1191 ◽  
Author(s):  
Asim Shahzad ◽  
Sana Ullah Nasir

Empirical model for predicting fatigue damage behavior of composite materials developed recently has been applied to composite materials made of different fibers in various configurations: carbon and glass fiber noncrimp fabric reinforced epoxy composites, chopped strand mat glass fiber-reinforced polyester composites, randomly oriented nonwoven hemp fiber-reinforced polyester composites, and glass/hemp fiber-reinforced polyester hybrid composites. The fatigue properties were evaluated in tension–tension mode at stress ratio R = 0.1 and frequency of 1 Hz. The experimental fatigue data were used to determine the material parameters required for the model. It has been found that the model accurately predicts the degradation of fatigue life of composites with an increase in number of fatigue cycles. The scope of applicability of this model has thus been broadened by using the fatigue data of natural fiber and noncrimp fabric composites.


Sign in / Sign up

Export Citation Format

Share Document