Novel Wear Testing Apparatus to Investigate the Reciprocating Sliding Wear in Sheet Metal Forming at Elevated Temperatures

2014 ◽  
Vol 622-623 ◽  
pp. 1158-1165 ◽  
Author(s):  
Andrea Ghiotti ◽  
Stefania Bruschi ◽  
Francesco Sgarabotto ◽  
Francesco Medea

Hot stamping has gained increasing importance in the last years due to the introduction of High Strength Steels (HSS) to improve the strength-to-mass ratio of stamped components. Despite the advantages in terms of load decrease, springback reduction and increased formability, the elevated temperatures the tools are subjected to may determine severe thermal mechanical cycling, increased oxidation and wear, which influence the tools service life and the quality of the produced parts. In addition, the frictional behaviour is also changing with temperature, thus affecting the performance of the forming operation itself. In this paper a novel experimental apparatus suitable for reciprocating sliding wear tests at elevated temperatures is presented. It consists of a linear sliding guideway connected to an electrical actuator and equipped with a heating plate to heat metal sheets. A solid frame embeds a screw device used to apply normal load. Thermocouples placed both on the plate and on sheet sample are used to control temperature during the test. The machine is also equipped with two load cells to record the normal and the tamgential loads. The 22MnB5 high strength steel was chosen as reference material for the machine testing. The results showed the capability of the new equipment and the good stability of the mechanical and thermal condition during testing.

2015 ◽  
Vol 1087 ◽  
pp. 350-354 ◽  
Author(s):  
D. Harun ◽  
Abdul Latif Mohd Tobi ◽  
A. Singh Chaal ◽  
Ramdziah Md. Nasir

Reciprocating sliding wear test of uncoated titanium alloy, Ti-6Al-4V is investigated using pin-on-flat arrangement under variable applied normal load. The wear scar produced by the reciprocating sliding wear test is analysed by surface profile examination using 2D and 3D optical microscope (OM) and Scanning Electron Microscope (SEM). Through SEM, the energy-dispersive X-ray spectroscopy (EDX) is used to characterise the composition of the substance on the worn surface. The hardness value of the wear scar is investigated at three regions which are; worn, unworn and the end of the wear track using Micro Vickers Hardness Test. The presence of moderate oxygen composition and the increasing in hardness value at the end of wear track suggesting evidence of plastic deformation. The increase in hardness value at the end of wear track indicates increase in plastic deformation with increasing applied normal load.


Wear ◽  
2017 ◽  
Vol 382-383 ◽  
pp. 78-84 ◽  
Author(s):  
Z. Wang ◽  
K. Georgarakis ◽  
W.W. Zhang ◽  
K.G. Prashanth ◽  
J. Eckert ◽  
...  

2015 ◽  
Vol 773-774 ◽  
pp. 168-172
Author(s):  
D. Harun ◽  
D. Nalatambi ◽  
Ramdziah Md. Nasir ◽  
Abdul Latif Mohd Tobi

Reciprocating sliding wear test of uncoated titanium alloy, Ti-6Al-4V is investigated using pin-on-flat contact arrangement of Ti-6Al-4V/Ti-6Al-4V pair under variable number of cycles at low number of cycles. The worn surfaces of the titanium alloy specimens were analyzed with the use of optical microscope (2D and 3D OM) and Vickers Hardness analysis was carried on. The pattern of the wear scar characteristics determined and the finding at the end of wear track had been focus through the presence at the end of wear track. It is suggesting an evidence of plastic deformation with the increasing in hardness value. The increase in hardness value at the end of wear track indicates increase in the plastic deformation with increasing number of cycles.


Wear ◽  
2019 ◽  
Vol 422-423 ◽  
pp. 108-118 ◽  
Author(s):  
M. Peruzzo ◽  
F.L. Serafini ◽  
M.F.C. Ordoñez ◽  
R.M. Souza ◽  
M.C.M. Farias

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 721
Author(s):  
Yongjun Jeon ◽  
Hyunseok Choi ◽  
Dongearn Kim

The recent stringent regulations on vehicle safety and reducing CO2 emissions have led to a continuous increase in the application of press-hardened steel (PHS) in automobiles. Similar to other high-strength steels, assembling PHS components using the common welding techniques employed in automotive production lines is significantly difficult because of the surface coating layers and the additives within. This difficulty in post-processing, attributed to its high strength, also limits the mechanical fastening of PHS components. Therefore, this study aims to develop a process for forming a structure enabling mechanical fastening by sequentially applying piercing and hole-flanging operations during the hot stamping process. Our experimental apparatus was designed to perform the hole-flanging operation after the piercing operation within a single stroke at a specific temperature during the quenching process of PHS. At high temperatures of 440 °C or higher, the hole-flanging process was conducted in a direction opposite to that of the piercing operation for creating the pilot hole. An extruded collar with a height of 8.0 mm and a diameter of 17.5 mm was achieved, which is hole expansion ratio(HER) of 82.5%.


2019 ◽  
Vol 45 (5) ◽  
pp. 6447-6458 ◽  
Author(s):  
Cong Mao ◽  
Fangjian Zhou ◽  
Yongle Hu ◽  
Peihao Cai ◽  
Yifeng Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document