Visual Servoing of Automatic Alignment System Using Model Predictive Control

2014 ◽  
Vol 625 ◽  
pp. 627-632
Author(s):  
Chi Ying Lin ◽  
Yu Sheng Zeng

Over the past few decades, vision based alignment has been accepted as an important technique to achieve higher economic benefits for precision manufacturing and measurement applications. Also referred to as visual servoing, this technique basically applies the vision feedback information and drives the moving parts to the desired target location using some appropriate control laws. Although recently rapid development of advanced image processing algorithms and hardware have made this alignment process an easier task, some fundamental issues including inevitable system constraints and singularities, still remain as a challenging research topic for further investigation. This paper aims to develop a visual servoing method for automatic alignment system using model predictive control (MPC). The reason for using this optimal control for visual servoing design is because of its capability of handling constraints such as motor and image constraints in precision alignment systems. In particular, a microassembly system for peg and hole alignment application is adopted to illustrate the design process. The goal is to perform visual tracking of two image feature points based on a XYθ motor-stage system. From the viewpoint of MPC, this is an optimization problem that minimizes feature errors under given constraints. Therefore, a dynamic model consisting of camera parameters and motion stage dynamics is first derived to build the prediction model and set up the cost function. At each sample step the control command is obtained by solving a quadratic programming optimization problem. Finally, simulation results with comparison to a conventional image based visual servoing method demonstrate the effectiveness and potential use of this method.

Author(s):  
Qian Zhong ◽  
Ronald W. Yeung

Model-Predictive Control (MPC) has shown its strong potential in maximizing energy extraction for Wave-Energy Converters (WECs) while handling hard constraints. As MPC can solve the optimization problem on-line, it can better account for state changes and reject disturbances from the harsh sea environment. Interests have arisen in applying MPC to an array of WECs, since researchers found that multiple small-size WECs are more economically viable than a single large-size WEC. However, the computational demand is known to be a primary concern for applying MPC in real-time, which can determine the feasibility of such a controller, particularly when it comes to controlling an array of absorbers. In this paper, we construct a cost function and cast the problem into a Quadratic Programming (QP) with the machinery force being the “optimizer,” for which the convexity can be guaranteed by introducing a penalty term on the slew rate of the machinery force. The optimization problem can then be solved efficiently, and a feasible solution will be assured as the global optima. Constraints on the motion of the WEC and the machinery force will be taken into account. The current MPC will be compared to others existing in literature, including a nonlinear MPC [1] which has been applied in wave-tank tests. The effects of constraints on the control law and the absorbed power are investigated. Performances of the WEC are shown for both regular and irregular wave conditions. The current MPC is found to have good energy-capture capability and is able to broaden the band-width for capturing wave energy. The reactive power required by the PTO system is presented. The additional penalty term provides a tuning parameter, of which the effects on the MPC performance and the reactive power requirement are discussed.


Author(s):  
Michael E. Cholette ◽  
Dragan Djurdjanovic

In this paper, a model-predictive control (MPC) method is detailed for the control of nonlinear systems with stability considerations. It will be assumed that the plant is described by a local input/output ARX-type model, with the control potentially included in the premise variables, which enables the control of systems that are nonlinear in both the state and control input. Additionally, for the case of set point regulation, a suboptimal controller is derived which has the dual purpose of ensuring stability and enabling finite-iteration termination of the iterative procedure used to solve the nonlinear optimization problem that is used to determine the control signal.


2017 ◽  
Vol 60 ◽  
pp. 51-62 ◽  
Author(s):  
Sergio Lucia ◽  
Alexandru Tătulea-Codrean ◽  
Christian Schoppmeyer ◽  
Sebastian Engell

2020 ◽  
Vol 68 (8) ◽  
pp. 687-702
Author(s):  
Thomas Schmitt ◽  
Tobias Rodemann ◽  
Jürgen Adamy

AbstractEconomic model predictive control is applied to a simplified linear microgrid model. Monetary costs and thermal comfort are simultaneously optimized by using Pareto optimal solutions in every time step. The effects of different metrics and normalization schemes for selecting knee points from the Pareto front are investigated. For German industry pricing with nonlinear peak costs, a linear programming trick is applied to reformulate the optimization problem. Thus, together with an efficient weight determination scheme, the Pareto front for a horizon of 48 steps is determined in less than 4 s.


Sign in / Sign up

Export Citation Format

Share Document