Evaluation of Running Safety for Railway vehicles Based on Vibration Acceleration of Bogie

2014 ◽  
Vol 625 ◽  
pp. 689-694
Author(s):  
Young Sam Ham

The lexical meaning of derailment shall be the wheels of trains going off the track and it is an important factor for the running safety of railway vehicles. For the measurement of interaction forces between the wheel and the rail, wheel set is used with normal method and the vibration accelerometer is used with simplified method to assess the safety of a railway vehicle in the derailment process. The result has been recorded by measuring vibration acceleration.

2017 ◽  
Vol 17 (09) ◽  
pp. 1750098 ◽  
Author(s):  
Yung-Chang Cheng ◽  
Chern-Hwa Chen ◽  
Chin-Te Hsu

Utilizing a nonlinear creep model, the dynamic behavior of tilting railway vehicles moving over curved tracks with rail irregularities and under earthquakes and wind loads is studied. The car model adopted consists of 28 degrees of freedom, capable of simulating the lateral, vertical, roll and yaw motions for the wheelsets, truck frames and car body. The derailment quotient is investigated to analyze the running safety of a tilting railway vehicle using the linear and nonlinear creep models, while considering the rail irregularities and environmental forces for various tilting angles. Generally, the derailment risk of the tilting railway vehicle is higher than that of non-tilting railway vehicle with or without rail irregularities and environmental forces. The derailment quotients calculated by the linear creep model are underestimated for a tilting railway vehicle. In addition, the derailment quotients evaluated for rough rails and under environmental forces are higher than those obtained for smooth rails with no environmental forces. It is confirmed that rail irregularities and each type of environmental forces have decisive effects on derailment quotients. They are compared and ranked according to their significance.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 91
Author(s):  
Sunghyun Lim ◽  
Yong-hyeon Ji ◽  
Yeong-il Park

Railway vehicles are generally operated by connecting several vehicles in a row. Mechanisms connecting railway vehicles must also absorb front and rear shock loads that occur during a train’s operation. To minimize damage, rail car couplers are equipped with a buffer system that absorbs the impact of energy. It is difficult to perform a crash test and evaluate performance by applying a buffer to an actual railway vehicle. In this study, a simulation technique using a mathematical buffer model was introduced to overcome these difficulties. For this, a model of each element of the buffer was built based on the experimental data for each element of the coupling buffer system and a collision simulation program was developed. The buffering characteristics of a 10-car train colliding at 25 km/h were analyzed using a developed simulator. The results of the heavy collision simulation showed that the rubber buffer was directly connected to the hydraulic shock absorber in a solid contact state, and displacement of the hydraulic buffer hardly occurred despite the increase in reaction force due to the high impact speed. Since the impact force is concentrated on the vehicle to which the collision is applied, it may be appropriate to apply a deformation tube with different characteristics depending on the vehicle location.


2021 ◽  
Vol 217 ◽  
pp. 104732
Author(s):  
R. Heleno ◽  
P.A. Montenegro ◽  
H. Carvalho ◽  
D. Ribeiro ◽  
R. Calcada ◽  
...  

Author(s):  
Yuewei Yu ◽  
Leilei Zhao ◽  
Changcheng Zhou

In order to further reveal the vertical random vibration characteristics of railway vehicles, using the system engineering method, taking the passenger, the train system, and the track system (ballast track) as a unified whole, a passenger-train-track vertical coupling dynamic model is established, and the vibration differential equations of the model are derived. In the model, passengers are regarded as a single-degree-of-freedom system attached to the bottom of the carriage, the train system is represented as a 10-degree-of-freedom multi-rigid body model, the track system is regarded as the infinite long Euler beam model with three layers of continuous elastic point support, and the Hertz nonlinear elastic contact theory is applied to the wheel and rail coupling relationship. Based on this, the time-domain numerical solution of the passenger-train-track vertical coupling dynamic model is given by using Newmark- β implicit integration algorithm, and the correctness of the model is verified by the real vehicle test. This study can provide some theoretical basis for the design of railway vehicles and provide fundamentals for the coordinated control and system optimization of railway vehicle ride comfort.


2017 ◽  
Vol 137 ◽  
pp. 01006 ◽  
Author(s):  
Ion Manea ◽  
Ioan Sebesan ◽  
Marius Ene ◽  
Mihai Gabriel Matache ◽  
Sorin Arsene

Author(s):  
Haifeng Hong ◽  
Hongtao Liu ◽  
Ziwen Fang ◽  
Kefei Wang ◽  
Jianran Wang ◽  
...  

Abstract An anti-collision and energy absorbing device is generally placed at the front end of railway vehicles to provide controlled collapse and sufficient energy absorbing capacity. In the conventional way, the energy absorbing device is usually designed as an integrated part of the carbody that can’t be easily replaced nor maintained after crash. To increase the maintainability and energy absorbing capacity of the energy absorbing device, a Multi-stage Crashworthiness Energy Absorbing Device has been developed, in which the first-stage and the second-stage energy absorbing units can be replaced or repaired under the collision that is not severe enough to initiate the third-stage energy absorbing unit. The Crashworthiness Energy Management (CEM) has four stages: coupler energy absorbing components (stage 1), honeycomb in the sliding center anti-climber (stage 2), metal peeling tubes mounted at the back of the fixed anti-climber (stage 3) and the structural components in the cab area (stage 4). By comparing the simulation results and test results, it is concluded that the finite element simulation model can provide dependable and accurate prediction for collision behaviors. Based on the design, simulation and test data, a safe, reliable and maintainable Multi-stage Crashworthiness Energy Absorbing Device has been verified and validated, which can provide valuable reference for researchers and engineers in the crashworthiness and railway vehicle industry.


2012 ◽  
Vol 518 ◽  
pp. 16-23 ◽  
Author(s):  
Michał Opala

This article describes an example analysis of safety against derailment of a railway vehicle. The analysis is based on the experimental data recorded during measurement of the wheel-rail interaction forces and lateral accelerations. The data is used for the calculation of two safety against derailment indicators and then the indicators are compared to each other. The first indicator is the ratio of the lateral to vertical wheel-rail forces Y/Q, based on the Nadal criteria. The second indicator is given in the energy description. In this description, the derailment of a railway vehicle depends on the amount of the work that has been done by the total lateral force acting on the single wheelset. The second indicator can be particularly convenient for a railway vehicle condition monitoring system, because it does not require the measurement of the contact forces.


Sign in / Sign up

Export Citation Format

Share Document