Quality Evaluation of Air Entraining Agent Based on Air Void Parameters of Fresh Concrete

2014 ◽  
Vol 629-630 ◽  
pp. 593-599
Author(s):  
Lu Yang ◽  
Yong Jiang Xie ◽  
Hua Jian Li

In order to evaluate the quality of air entraining agent quickly and effectively. Air void parameters of fresh concrete with different air entraining agents were studied by Air Void Analyzer (AVA). The spacing factor and durability index of hardened concrete were tested and the relationship between the surface tension of air entraining agent and frost resistance of concrete was compared. The results showed that, the quality of air entraining agent can be evaluated quickly and effectively by diameter distribution of air bubbles in fresh concrete and spacing factor of fresh concrete. AEA2 introduced much more big air bubbles into concrete which is bad for the frost resistance of concrete. The quality of AEA2 was the worst, so the durability index of hardened concrete was 58.7%. Quality of air entraining agent cannot be characterized by properties of air entraining agent, but air entraining ability can be characterized by surface tension of air entraining agent. Keywords: air entraining agent (AEA), air void parameter, fresh concrete

2020 ◽  
Vol 10 (2) ◽  
pp. 632 ◽  
Author(s):  
Hui Zhang ◽  
Peiwei Gao ◽  
Zhixiang Zhang ◽  
Youqiang Pan ◽  
Weiguang Zhang

Through laboratory testing, this research studied the connection between air-void structures of hardened concrete and fresh concrete and discussed the effects of the air-void structure on the salt-frost durability of the concrete. The results demonstrate that, in comparison with fresh concrete, the air-void spacing factor shows a close correlation with hardened concrete air-content and decreases in the form of a power function as the air-content increases. When the fresh concrete air-content is more than 6% and the hardened concrete air-void spacing factor is less than 0.18 mm, the influence of parameters of air-void structure on the salt-frost resistance of the concrete reduces. The air-void spacing factor more significantly affects the salt-frost resistance of the concrete compared with air content and the correlation reaches 0.93. Therefore, air-content and air-void spacing factor are recommended for dual control.


2013 ◽  
Vol 857 ◽  
pp. 110-115 ◽  
Author(s):  
Xiu Hua Zheng ◽  
Yong Ge ◽  
Jie Yuan

Air-entraining agent turely is one of the necessary compositions of the high durability concrete. The influence of air content and vibration time on the frost resistance of concrete was researched, and air void characteristics of hardened concrete was analysed. The results showed that the air contents could reduce the compressive strengthof hardened concrete excessively, but it made the spacing factor reduce obviously and significantly improve the frost resistance of concrete.The air voids with different structure in concrete were realized by vibration time. It was found that the air void structure and the frost resistance properties were influenced by the vibration time largely. The optimized vibration time is 30s, the appropriate vibration time is 20s~30s, no more than 35s.


1996 ◽  
Vol 23 (5) ◽  
pp. 1118-1128 ◽  
Author(s):  
François Saucier ◽  
Richard Pleau ◽  
Daniel Vézina

Since 1993, the Quebec Department of Transportation requires all its concrete suppliers to demonstrate that their concrete satisfies the requirements of the CSA A23.1 standard as regards the maximum spacing factor of the air void system. This new requirement raises questions about the reproducibility of the ASTM C 457 test method. An interlaboratory study was carried out to verify if the variability of the test method is sufficiently low to allow reliable decisions on the acceptance or rejection of in-place hardened concrete. A total of 18 operators from 13 different laboratories microscopically examined the six concrete slabs used for the study. It is concluded that the average reproducibility coefficient of variation is 14.4% for the total air content measurement and 14.2% for the spacing factor measurement. Considering these results, the probability that the measured value of the spacing factor exceeds the mandatory limit of 230 μm on a concrete production containing an air void system with a spacing factor of 170 μm (the target value proposed in the CSA A23.1 M-94 standard) is less than 0.7% (a probability of error of about 1%, 5%, or 10% is typical of most quality control test methods). Key words: concrete, air content, air void measurement, spacing factor, ASTM C 457 standard, interlaboratory study, freeze–thaw durability.


2019 ◽  
Vol 1 (1) ◽  
pp. 244-250
Author(s):  
Alina Pietrzak

Abstract Due to a constant increase in generating the amount of sewage waste it is necessary to find an alternative method of its use or disposal. One of such methods can be utilization of sewage sludge in construction materials industry, particularly in concrete technology and other materials based on cement. It allows using waste materials as a passive additive (filler) or also as an active additive (replacement of part of bonding material). The article aims at presenting the analysis of the effect of adding slag, achieved from wastewater sludge incineration in sewage treatment plant, on properties and quality of concrete mix and hardened concrete. Using an experimental method, the researcher designed the composition of the control concrete mix, which was then modified by means of slag. For all concrete mixtures determined – air content with the use of pressure method and consistency measured by the use of concrete slump test. For all concrete series the following tests were conducted: compressive strength of concrete after 7, 28 and 56 days of maturing, frost resistance for 100 cycles of freezing and thawing, water absorption. The use of slag, ground once in the disintegrator, causes a decrease of in compressive strength of concrete samples in relation to the control concrete series as well as bigger decrease in compressive strength after frost resistance test.


1988 ◽  
Vol 15 (3) ◽  
pp. 306-314
Author(s):  
Gaston Larose ◽  
Michel Pigeon

The durability of concrete to freeze-thaw cycles is dependent upon the existence of an adequate air-void system. There are very few studies on the air-void system of field concretes. Laboratory tests have proven that the air content measurement on the fresh concrete is not sufficient to judge the aptitude of the air-void system to protect the concrete from frost damage.This paper is a comparison of the air-void systems of field concretes produced in either a conventional plant or a mobile unit the use of which is becoming more and more frequent. The concretes produced in the conventional plant generally had sufficient air-void systems for air contents in the usual range (5–7%). The mobile unit showed that a slightly higher air content (8%) was needed to produce an adequate air-void system. Key words: concrete, mobile concrete-mixer, air-void systems, air-entraining agent, spacing factor, surface area, air content.


1976 ◽  
Vol 3 (4) ◽  
pp. 570-577 ◽  
Author(s):  
B. W. Langan ◽  
M. A. Ward

The effects of agitation and retempering on some properties of fresh and hardened concrete are considered.Data are presented on the influence of agitation and retempering with an air-entraining agent on the workability, compressive strength, and air void system in hardened concrete.The results indicate that although agitation reduces air content and increases the spacing factor, the original parameters can be regained by proper retempering. It is shown that any loss in compressive strength due to retempering is accompanied by an increase in potential durability due to the improvement of the air void system.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1820 ◽  
Author(s):  
Xiaohui Zeng ◽  
Xuli Lan ◽  
Huasheng Zhu ◽  
Haichuan Liu ◽  
Hussaini Abdullahi Umar ◽  
...  

In order to improve the stability of air bubbles in fresh concrete, it is of great significance to have a better understanding of the mechanisms and main influencing factors of bubble stability. In the present review, the formation and collapse process of air bubbles in fresh concrete are essentially detailed; and the advances of major influencing factors of bubble stability are summarized. The results show that the surface tension of air–liquid interface exerts a huge impact on bubble stability by reducing surface free energy and Plateau drainage, as well as increasing the Gibbs surface elasticity. However, surface tension may not be the only determinant of bubble stability. Both the strength of bubble film and the diffusion rate of air through the membrane may also dominate bubble stability. The application of nano-silica is a current trend and plays a key role in ameliorating bubble stability. The foam stability could be increased by 6 times when the mass fraction of nano-particle reached 1.5%.


2016 ◽  
Vol 62 (4) ◽  
pp. 181-192 ◽  
Author(s):  
J. Wawrzeńczyk ◽  
A. Molendowska ◽  
T. Juszczak

AbstractIn this paper we discuss the test results for concretes containing various amounts of ggbs as compared to concretes made with Portland cement. The main objective of these tests is to evaluate the influence of varying air content in such mixtures on the structure and frost resistance of concrete. The authors suggest that the approach presented here allows for a safe design of concrete mixtures in terms of their frost resistance.The results indicate that concrete can be resistant to surface scaling even at the W/C ratio markedly higher than 0.45. Increased addition of ggbs leads to a decrease in concrete resistance to surface scaling. Proper air entrainment is the fundamental factor for frost-resistant concrete, and the air void system has to be assessed (micropore content A300, spacing factor $\overline L $). The addition of ggbs increases pore diameters, thus, to obtain the appropriate air pore spacing factor, micropore quantities introduced have to be increased.


1982 ◽  
Vol 9 (2) ◽  
pp. 170-175
Author(s):  
K. F. Keirstead ◽  
D. DeKee ◽  
D. W. Kirk ◽  
S. U. Pillai

One of the properties of air-entraining admixtures that may influence their efficiency is their surface tension when combined with mixing water. Lignosol SF is a standard air-entraining agent. With the objective of identifying a product with improved qualities, Lignosol SF was fractionated and two of its fractions, respectively with low (foamate) and high (retentate) surface tension properties were investigated as potential air-entraining agents. Measurements were made both of air content in wet concrete mix and of the air-void characteristics of the hardened concrete.The results showed that at low concentrations and water:cement ratios the performance of all the three products above are similar. However, the foamate fraction becomes more effective in entraining air with increases in concentration and water:cement ratio. Further, this foamate resulted in the hardened concrete having bubbles with a smaller mean diameter than those in the retentate. The spacing factors for both these products were within recommended limits. Keywords: admixtures; air-entrainment; air-voids; concrete; freeze-thaw resistance; Lignosol; spacing factor.


2013 ◽  
Vol 20 (4) ◽  
pp. 1103-1108 ◽  
Author(s):  
Hua-jian Li ◽  
Yong-jiang Xie ◽  
Lu Yang

Sign in / Sign up

Export Citation Format

Share Document