scholarly journals Scaling Resistance and Air Void Characteristics in Concrete Containing GGBS

2016 ◽  
Vol 62 (4) ◽  
pp. 181-192 ◽  
Author(s):  
J. Wawrzeńczyk ◽  
A. Molendowska ◽  
T. Juszczak

AbstractIn this paper we discuss the test results for concretes containing various amounts of ggbs as compared to concretes made with Portland cement. The main objective of these tests is to evaluate the influence of varying air content in such mixtures on the structure and frost resistance of concrete. The authors suggest that the approach presented here allows for a safe design of concrete mixtures in terms of their frost resistance.The results indicate that concrete can be resistant to surface scaling even at the W/C ratio markedly higher than 0.45. Increased addition of ggbs leads to a decrease in concrete resistance to surface scaling. Proper air entrainment is the fundamental factor for frost-resistant concrete, and the air void system has to be assessed (micropore content A300, spacing factor $\overline L $). The addition of ggbs increases pore diameters, thus, to obtain the appropriate air pore spacing factor, micropore quantities introduced have to be increased.

1996 ◽  
Vol 23 (5) ◽  
pp. 1118-1128 ◽  
Author(s):  
François Saucier ◽  
Richard Pleau ◽  
Daniel Vézina

Since 1993, the Quebec Department of Transportation requires all its concrete suppliers to demonstrate that their concrete satisfies the requirements of the CSA A23.1 standard as regards the maximum spacing factor of the air void system. This new requirement raises questions about the reproducibility of the ASTM C 457 test method. An interlaboratory study was carried out to verify if the variability of the test method is sufficiently low to allow reliable decisions on the acceptance or rejection of in-place hardened concrete. A total of 18 operators from 13 different laboratories microscopically examined the six concrete slabs used for the study. It is concluded that the average reproducibility coefficient of variation is 14.4% for the total air content measurement and 14.2% for the spacing factor measurement. Considering these results, the probability that the measured value of the spacing factor exceeds the mandatory limit of 230 μm on a concrete production containing an air void system with a spacing factor of 170 μm (the target value proposed in the CSA A23.1 M-94 standard) is less than 0.7% (a probability of error of about 1%, 5%, or 10% is typical of most quality control test methods). Key words: concrete, air content, air void measurement, spacing factor, ASTM C 457 standard, interlaboratory study, freeze–thaw durability.


1988 ◽  
Vol 15 (3) ◽  
pp. 306-314
Author(s):  
Gaston Larose ◽  
Michel Pigeon

The durability of concrete to freeze-thaw cycles is dependent upon the existence of an adequate air-void system. There are very few studies on the air-void system of field concretes. Laboratory tests have proven that the air content measurement on the fresh concrete is not sufficient to judge the aptitude of the air-void system to protect the concrete from frost damage.This paper is a comparison of the air-void systems of field concretes produced in either a conventional plant or a mobile unit the use of which is becoming more and more frequent. The concretes produced in the conventional plant generally had sufficient air-void systems for air contents in the usual range (5–7%). The mobile unit showed that a slightly higher air content (8%) was needed to produce an adequate air-void system. Key words: concrete, mobile concrete-mixer, air-void systems, air-entraining agent, spacing factor, surface area, air content.


1976 ◽  
Vol 3 (4) ◽  
pp. 570-577 ◽  
Author(s):  
B. W. Langan ◽  
M. A. Ward

The effects of agitation and retempering on some properties of fresh and hardened concrete are considered.Data are presented on the influence of agitation and retempering with an air-entraining agent on the workability, compressive strength, and air void system in hardened concrete.The results indicate that although agitation reduces air content and increases the spacing factor, the original parameters can be regained by proper retempering. It is shown that any loss in compressive strength due to retempering is accompanied by an increase in potential durability due to the improvement of the air void system.


2012 ◽  
Vol 5 ◽  
pp. 364-369 ◽  
Author(s):  
Xiu Hua Zheng ◽  
Qin Fei Li ◽  
Jie Yuan ◽  
Yong Ge

The flexural strength and frost resistance properties of air entrained concrete were tested in this study. Although the flexural strength of concrete does not change largely with increasing of air content, it still has a maximum value with air content of 4%. The test results show that the frost resistance increase with increasing of air content. In air entrained concrete, the total air content is not the only factor that affect the final properties of the concrete, the air void structure parameters, including void size, shape, and distribution, are key factors as well. It was found that the air void structure and the frost resistance properties were influenced by the vibration time largely. The optimized vibration time is 30s.


2020 ◽  
Vol 10 (2) ◽  
pp. 632 ◽  
Author(s):  
Hui Zhang ◽  
Peiwei Gao ◽  
Zhixiang Zhang ◽  
Youqiang Pan ◽  
Weiguang Zhang

Through laboratory testing, this research studied the connection between air-void structures of hardened concrete and fresh concrete and discussed the effects of the air-void structure on the salt-frost durability of the concrete. The results demonstrate that, in comparison with fresh concrete, the air-void spacing factor shows a close correlation with hardened concrete air-content and decreases in the form of a power function as the air-content increases. When the fresh concrete air-content is more than 6% and the hardened concrete air-void spacing factor is less than 0.18 mm, the influence of parameters of air-void structure on the salt-frost resistance of the concrete reduces. The air-void spacing factor more significantly affects the salt-frost resistance of the concrete compared with air content and the correlation reaches 0.93. Therefore, air-content and air-void spacing factor are recommended for dual control.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 316
Author(s):  
Aneta Nowak-Michta

A side effect of using modified polycarboxylates to liquefy a concrete mix is additional pores in the concrete. They change the air void system in hardened concretes, and can be used to evaluate the freeze–thaw resistance of concretes. The purpose of this study is to determine the impact of the abovementioned quantitative and qualitative parameters on the freeze–thaw resistance of concretes. The research program was performed on eight sets of air-entraining and non-air-entraining concretes with a variable content of superplasticizer based on modified polycarboxylates. The basic composition of and air-entraining admixture content in the air-entraining concrete mixtures were held constant. Pore structure tests were performed according to EN 480-11. Scaling resistance was determined according to PKN-CEN/TS 12390-9. The results showed that as the content of modified polycarboxylates increased, the pore structure was adversely affected, and, consequently, the air void parameters deteriorated. At the same time, the freeze–thaw resistance of the non-air-entraining concretes decreased. The pores sizes also changed. As the fluidity increased, the specific surface area decreased, and, consequently, the spacing factor increased. The air-entraining concretes, despite the deterioration in the pore structure due to the modified polycarboxylates, were found to be very good quality concretes after 56 freeze–thaw cycles in the presence of 3% NaCl.


Author(s):  
Beata Łaźniewska-Piekar ◽  
Jacek Gołaszewski

Research results of the relationships between air-volume in air-entrained cement paste, mortar and concrete, all designed according to PN-EN 480-1 guidelines are presented in the paper. The cement paste, mortar and concrete, with w/c=0,5 ratio, were prepared using innovative air-entraining cement CEM II/B-V. The air-entraining cement CEM II/B-V was produced using two methods: mixed together with natural or synthetic aerated admixture. The air volume test of the volumetric method was carried out in case of fresh cement paste, mortar and concrete mix. Fresh concretes were evaluated in terms of stability of air entrainment and consistency for 5, 20 and 40 min. The porosity structure parameters, like summarized air-content, specific surface of air voids, air-voids spacing factor and micropores content of hardened concrete, were estimated using computed tomography with a resolution of 2-5 μm. The aim of the research was to determine the dependence between air-content of cement paste, mortar and concrete on the measurement of air-entrainment of cement paste or mortar with the same w/c ratio and type of cement, all designed according to PN-EN 480-1 guidelines. Test results proved that there is a good correlation between the measured air-content of the cement paste, mortar and concrete. Therefore, it is possible to predict the aeration of concrete on the air-entrainment of the mortar.


Author(s):  
Mohammed T. Albahttiti ◽  
Ahmad A. Ghadban ◽  
Kyle A. Riding ◽  
David Lange

Handling and vibration can affect the air content of prestressed concrete railroad ties. The amount and variation in vibration experienced in concrete railroad ties were investigated to determine the concrete fabrication conditions typically used. Two methods of fabrication were investigated by measuring the concrete properties and vibration exposure during placement at two concrete tie manufacturing plants. In addition to measuring the vibration distribution in concrete railroad ties, a pair of ties were selected for hardened-air void analyses to determine any variation of air content in relation to the height of the ties. The vibration results indicate the existence of constructive and destructive wave-interferences in tie cavities. These interferences may contribute to large variations in the vibration acceleration throughout the length, depth, and width of concrete crossties during fabrication. This may account for the air-loss across the depth of the ties.


2021 ◽  
Vol 72 (2) ◽  
pp. 27-37
Author(s):  
Yang Li ◽  
Zhendi Wang ◽  
Ling Wang

The effectiveness of Air entraining agent (AEA) in concrete under low air pressure in the plateau area decreased. A type of new AEA, named MRE was synthesized to increase bubbles` stability in fresh concrete under low air pressure. The performance of MRE solution and concrete with MRE were tested under 60 kPa and 100 kPa compared with commercially gemini AEA (DCC). The test results showed that the foam volume of MRE and DCC solution under 60 kPa was reduced by 3% and 9% than under 100 kPa. The bubble liquid film strength of MRE is 63% higher than that of DCC. For concrete with MRE and DCC under 60 kPa, the air content was 2% and 16% lower, the relative dynamic modulus of concrete reduced by 6% and 15%, and the bubble spacing factor under 60 kPa increased by 17% and 39% respectively compared with that under 100 kPa. MRE can increase the freeze-thaw resistance of concrete under low air pressure without affecting concrete strength and is suitable for high altitude concrete.


Author(s):  
M. Lessard ◽  
M. Baalbaki ◽  
P.-C. Aïtcin

The stability of the air content of concrete during pumping has been the subject of a number of recent investigations. Because increasing volumes of concrete are placed with the aid of pumps and the durability of such concrete to freezing and thawing (ASTM C666) as well as the scaling resistance (ASTM C672) preoccupy engineers, a study concerning the stability of the air-void system of a concrete with 45 to 50 MPa compressive strength was carried out. The slump of the three tested concretes ranged between 85 and 115 mm. Three pumping setups were studied. In the first, the concrete was pumped horizontally; in the second the concrete was pumped upward and then downward. In the third, the vertical setup was used but a reduced section was placed at the end of the pump line, and the concrete was allowed to free fall a short distance. For each pump setup, the concrete was sampled before being placed in the pump and after leaving the pump. The results clearly show that when the concrete is pumped horizontally, the spacing factor (L) and the specific surface of the air-void system are barely altered. On the other hand, after pumping the concrete vertically without a reduced end section, it was impossible to obtain an L less than 230 μm, the maximum spacing factor allowed by Canadian standards (CSA A23.1) to ensure good frost durability. Furthermore, the specific surface of the air bubbles fell to 20 mm−1, which is inferior to the 25-mm−1 value recommended in Canadian standards. By placing a reduced section at the end of the vertical pump line, it was possible to enhance the air-void system but that procedure still fell short of ensuring a system that satisfies the air-void system recommended by Canadian standards to ensure proper frost durability. Although the pumped concrete mixtures did not always satisfy the requirements of CSA A23.1 regarding air-void systems, they satisfied the requirements of ASTM C666 (Procedure A) for resistance to freeze-thaw cycles. Freeze-thaw resistance in the presence of deicing salts was evaluated according to ASTM C672. After 50 frost cycles, all but one concrete exhibited mass losses that were lower than the maximum permissible limit of 0.50 kg/m2 required by BNQ 2621-900, the standard currently enforced in the province of Quebec. Placing a reduced section at the end of the pump line creates a light counterpressure in the descending section of the pump line, which allows the conservation of an acceptable air-void system. Considering the appreciable improvement in the preservation of air-void characteristics when a reduced section was placed at the end of the pump line, it was decided to proceed with further experimental work using four 90-degree elbows placed at the end of the vertically hanging pump line.


Sign in / Sign up

Export Citation Format

Share Document