Biocompatibility of Silver-Containing Calcium-Phosphate Cements with Anti-Bacterial Properties

2014 ◽  
Vol 631 ◽  
pp. 107-112
Author(s):  
Yusuke Shimizu ◽  
Yusuke Kawanobe ◽  
Toshiisa Konishi ◽  
Nobuyuki Kanzawa ◽  
Michiyo Honda ◽  
...  

We have previously synthesized silver-containing hydroxyapatite (Ag-HAp) powders by an ultrasonic spray-pyrolysis (USSP) technique. On the other hand, we have successfully fabricated novel calcium-phosphate cements (CPCs) composed of mainly β-tricalcium phosphate (β-TCP) phase with anti-washout property (hereafter, β-TCP cement), which was set on the basis of chelate-bonding ability of inositol phosphate (IP6). In this study, we developed novel CPCs with both anti-bacterial and anti-washout properties by adding the Ag-HAp powder into the above β-TCP cements, and examined their anti-bacterial property and cytotoxicity. The Ag-HAp powders with Ag contents of 0, 2, and 5 mol% as a nominal composition were synthesized by an USSP technique. The raw powder for β-TCP cement was prepared by ball-milling the commercially-available β-TCP powder in the IP6 solution. The Ag-HAp/β-TCP powders were prepared by mixing Ag-HAp powder and β-TCP cement powder at a ratio of 25:75 in mass. The Ag-HAp/β-TCP cement was fabricated by mixing the above-mentioned Ag-HAp/β-TCP powder and 2.5 mass% Na2HPO4 solution at a powder/liquid ratio of 1/0.3 [g/cm3]. The anti-bacterial property of resulting cements was evaluated using Staphylococcus aureus by biofilm formation test. The Ag-HAp/β-TCP cements containing 2 and 5 mol% Ag showed strong anti-bacterial property among examined specimens. Furthermore, the cytotoxicity of Ag+ ion eluted from these cements was also examined using osteoblastic MC3T3-E1 cells and Transwell® kit. The relative cell viability cultured on each Ag-containing cement specimen was over 80 %, compared with the control (polystyrene plate). These results demonstrate that the present Ag-HAp/β-TCP cements containing 2 mol% Ag are promising one of the candidates as CPCs with both anti-bacterial property and biocompatibility.

2006 ◽  
Vol 317-318 ◽  
pp. 57-60
Author(s):  
H.J. Wang ◽  
Young Keun Jeong ◽  
Kyung Sik Oh ◽  
B.H. Kim ◽  
Seong Hee Lee ◽  
...  

To overcome the difficulty of preparing the stoichiometric single phase calcium phosphate materials, ultrasonic spray pyrolysis was used to fabricate various calcium phosphates. Effect of the initial Ca/P ratios and pyrolysis temperature were investigated in preparation of single phase materials. Also thermal stability of the obtained powders was estimated with the heat treatment in the air. Crystallinity of the powders was analyzed using XRD and FT-IR. The HAp and β-TCP powders with single phase could be obtained from their stoichiometric Ca/P ratios of 1.50 and 1.67, respectively. These single phase powders with good crystallinity and stoichiometry were stable with respect to heat treatment up to 1000oC. The particle size of these powders would be controlled by the concentration of starting solution.


2012 ◽  
Vol 529-530 ◽  
pp. 167-172 ◽  
Author(s):  
Toshiisa Konishi ◽  
Shuhei Takahashi ◽  
Minori Mizumoto ◽  
Michiyo Honda ◽  
Koki Kida ◽  
...  

We have developed novel calcium-phosphate cements (CPCs) based on the chelate-setting mechanism of inositol phosphate (IP6) using hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP) and α-TCP as starting materials. These cements (IP6-HAp, IP6-β-TCP and IP6-α-TCP cements) have different bioresorbability due to the chemical composition of starting materials. In the present study, biocompatibility and bioresorbability of the above three cements and commercially available cement (Biopex®-R) was histologically evaluated in vivo using rabbit model for 4, 8, and 24 weeks, in addition to their dissolution in vitro. The dissolution of these cements increased in the order of IP6-HAp, IP6-β-TCP and IP6-α-TCP cements. The newly-formed bones were directly in contact with both the IP6-HAp and Biopex®-R cement specimens. As for the IP6-β-TCP and IP6-α-TCP cements, newly-formed bones were formed time-dependently slightly apart from the cement specimens. Resorption rate for Biopex®-R, IP6-HAp, IP6-β-TCP, and IP6-α-TCP cements after 24 weeks implantation were of 7.2, 5.0, 13.7, and 16.2%, respectively, compared to original cements. The present chelate-setting cements with different bioresorbability are promising candidates for application as the novel CPCs.


2012 ◽  
Vol 529-530 ◽  
pp. 157-160 ◽  
Author(s):  
Kemal Sariibrahimoglu ◽  
Joop G.C. Wolke ◽  
Sander C.G. Leeuwenburgh ◽  
John A. Jansen

Calcium phosphate cements (CPCs) can be a suitable scaffold material for bone tissue engineering because of their osteoconductivity and perfect fit with the surrounding tissue when injected in situ. However, the main disadvantage of hydroxyapatite (HA) forming CPC is its slow degradation rate, which hinders complete bone regeneration. A new approach is to use hydraulic apatite cement with mainly α/β-tricalciumphosphate (TCP) instead of α-TCP. After hydrolysis the α/β-TCP transforms in a partially non-absorbable HA and a completely resorbable β-TCP phase. Therefore, α-TCP material was thermally treated at several temperatures and times resulting in different α/β-TCP ratios. In this experiment, we developed and evaluated injectable biphasic calcium phosphate cements (BCPC) in vitro. Biphasic α/β-TCP powder was produced by heating α-TCP ranging from 1000-11250°C. Setting time and compressive strength of the CPCs were analyzed after soaking in PBS for 6 weeks. Results demonstrated that the phase composition can be controlled by the sintering temperature. Heat treatment of α-TCP, resulted in 100%, 75% and 25% of α-to β-TCP transformation, respectively. Incorporation of these sintered BCP powder into the cement formulation increased the setting time of the CPC paste. Compressive strength decreased with increasing β-TCP content. In this study, biphasic CPCs were produced and characterized in vitro. This injectable biphasic CPC presented comparable properties to an apatitic CPC.


2011 ◽  
Vol 493-494 ◽  
pp. 678-683 ◽  
Author(s):  
Yusuke Kawanobe ◽  
Michiyo Honda ◽  
Toshiisa Konishi ◽  
Minori Mizumoto ◽  
Yuri Habuto ◽  
...  

We prepared silver-containing hydroxyapatite (Ag-HAp) powders by an ultrasonic spray-pyrolysis (USSP) technique and evaluated their antibacterial activity.  Ag-HAp powders with Ag contents of 0, 1, 2, 5, and 20 mol% as nominal composition were prepared by the above USSP technique. The droplets of starting solutions were dried at 300 °C and then pyrolyzed at 850 °C to prepare the Ag-HAp powders. Ag-HAp powders showed a HAp single phase and were composed of spherical particles with a diameter of 0.5 - 3.0 μm. To evaluate the antibacterial activity of resulting powders, colony count method was performed using Staphylococcus aureus. Ag-HAp powders with the contents of Ag more than 5 mol% showed good antibacterial activity.


2014 ◽  
Vol 631 ◽  
pp. 402-407
Author(s):  
Mamoru Aizawa ◽  
Yuki Chibu ◽  
Kohei Nagata ◽  
Toshiisa Konishi ◽  
Ken Ishii ◽  
...  

Hydroxyapatite (HAp) is one of components of bone and teeth, and has an osteoconductivity. Thus, the HAp has been used as biomaterials for bone graftings. We have succeeded in development of the novel chelate-setting calcium-phosphate cement (CPC) using pure HAp particles surface-modified with inositol phosphate (IP6). While, biological apatite presented in bone and teeth of mammals contains various ions: Na+, K+, Mg2+, Cl-, F- and CO32-, in addition to Ca2+ and PO43- ions. In this work, in order to create the chelate-setting CPC with enhanced osteoconductivity, the above-mentioned biological apatite powder (hereafter, bone HAp), instead of pure HAp, was used as a starting powder for fabrication of the chelate-setting cement. The biocompatibility of the resulting chelate-setting bone HAp cement (hereafter, IP6-bone HAp cement) was examined using a rabbit’s tibia model. When the living reaction to hard tissue was histologically examined after 4 weeks implantation, we could observe that newly-formed bone directly bonded to the surface of the specimen. The newly-formed bone was also present around the cement specimen. The amounts of newly-formed bone around IP6-bone HAp cement was about 1.5 times those around IP6-pure HAp cement without bone minerals. The above findings demonstrate that the present IP6-bone HAp cements are one of the promising candidates as novel CPC with enhanced osteoconductivity.


Sign in / Sign up

Export Citation Format

Share Document