Dissolution Behavior of Zinc from Gel Composites Consisting of Calcium Phosphate and Alginate

2014 ◽  
Vol 631 ◽  
pp. 179-183
Author(s):  
Tomohiro Uchino ◽  
Yusuke Negishi ◽  
Keito Oguma

Amorphous calcium phosphate (ACP) is known as one of the precursors of bone hydroxyapatite (HAp). The ACP transforms into low crystalline HAp around 40°C. Zinc (Zn) is an essential trace element for the human body and has an important role in bone formation. Osteoporosis has been linked to Zn deficiency. Biomaterials that release Zn at site of bone resorption can potentially inhibit the progression of osteoporosis. In this study, we successfully prepared Zn-releasing injectable materials that consisting of ACP and alginate gel. We investigated the Zn dissolution behavior from these composite samples in environment that imitate bone metabolism. The Zn containing gel released Zn into an acetic acid buffer, which mimics the environment of osteoclast activity. In contrast, the gel sample did not released Zn when soaked in a simulated body fluid (Kokubo’s solution), a solution that mimics the environment of osteoblast activity and cell quiescence. Therefore, the ACP/alginate gel composite that is cross-linked with Zn2+ could control the rate of release in Zn. These gels are expected to be a Zn controlled-release intelligent material.

2012 ◽  
Vol 529-530 ◽  
pp. 119-122 ◽  
Author(s):  
Tomohiro Uchino ◽  
Keitaro Toda

Zinc is an essential trace element in body and has an important role of bone formation. Osteoporosis occurs by imbalance of osteoclasts and osteoblasts activity. The osteoclasts activity lowers the pH of peripheral body environment. Therapeutic agents release material in response to the osteoclasts activity is expected to be a controlled released material. In this study, Zn-containing amorphous calcium phosphate (ACP) powder was synthesized by wet synthesis. Zn content of obtained powders was higher than that of beginning content. ACP powders could be easy to take Zn at wet synthesis. After soaking in phosphate buffered saline for 24 hours, all of synthetic powders were transformed into low crystalline apatite. On the other hand, after soaking in acetic acid buffer for 24 hours, all these powders dissolved. Zn-containing ACP powders are expected to be a Zn controlled released material.


2021 ◽  
Vol 56 (9) ◽  
pp. 5493-5508
Author(s):  
Dong Su Yoo ◽  
Jung Sang Cho ◽  
Yong-Chae Chung ◽  
Sang-Hoon Rhee

AbstractA defect structure and osseointegration capacity of sodium and chloride co-substituted hydroxyapatite (NaClAp) were newly studied. The NaClAp was prepared by reacting H3PO4 and Ca(OH)2 with NaNO3 and NH4Cl followed by sintering; pure hydroxyapatite (HAp) was synthesized as a control. After sintering, the co-substitution of Ca and OH with Na and Cl, respectively, produced charged point defects at Ca and PO4 sites. Also, OH molecules partially adopted a head-on structure. The calculated total system energy of NaClAp was higher, whereas the binding energies between each constituent elements and system were lower than those of HAp. These results suggest that NaClAp was less stable than HAp, due to the formation of various defects by co-substitution of Na and Cl. Indeed, NaClAp exhibited higher dissolution behavior in simulated body fluid (SBF) compared with HAp. Accordingly, this increased the capability to produce low crystalline hydroxyl carbonate apatite, likely due to the increasing degree of apatite supersaturation in SBF. Besides, the NaClAp granules showed noticeable improvements in osseointegration capacity four weeks after in vivo test compared with HAp. Collectively, these results imply that the defects made by multiple ion substitutions are useful to increase osseointegration capacity of hydroxyapatite.


2008 ◽  
Vol 28 (7) ◽  
pp. 1149-1158 ◽  
Author(s):  
Y.C. Fu ◽  
M.L. Ho ◽  
S.C. Wu ◽  
H.S. Hsieh ◽  
C.K. Wang

2016 ◽  
Vol 721 ◽  
pp. 172-176 ◽  
Author(s):  
Jana Vecstaudza ◽  
Janis Locs

Amorphous and low crystalline calcium phosphates are prospective candidates for bone implant manufacturing. Amorphous calcium phosphate (ACP) preparation technologies could be improved in terms of specific surface area (SSA) of obtained products. Current study is dedicated to the effect of synthesis temperature and Ca and P molar ratios (Ca/P) on SSA of ACP. Higher SSA can improve bioactivity of biomaterials. ACP was characterized by XRD, FT-IR, SEM and BET N2 adsorption techniques. Spherical nanoparticles (<45 nm in size) were obtained independently of initial Ca/P ratio and synthesis temperature. For the first time comparison of SSA was shown for ACP obtained at different temperatures (0 °C and 20 °C) and Ca/P molar ratios (1.5, 1.67 and 2.2).


2008 ◽  
Vol 368-372 ◽  
pp. 1206-1208 ◽  
Author(s):  
Yan Bao Li ◽  
Dong Xu Li ◽  
Wen Jian Weng

Biphasic tricalcium phosphate (BTCP) powders composed of α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP) were prepared using amorphous calcium phosphate (ACP) precursor after heat treatment at 800oC. The in vitro dissolution behavior of the powders was examined after soaked in 0.1M NaAc-HAc buffer solution for different times. It was revealed that the Ca2+ and PO4 3- concentration, and pH value of the BTCP-soaked solution are higher than those of the α-TCP- and β-TCP-soaked solutions. The dissolution behavior of BTCP powders was explained. The specific dissolution behavior of BTCP powders can widen the biodegradation range of calcium phosphate family.


2005 ◽  
Vol 284-286 ◽  
pp. 549-552 ◽  
Author(s):  
Minna Vaahtio ◽  
Timo Peltola ◽  
Teuvo Hentunen ◽  
Heimo O. Ylänen ◽  
Sami Areva ◽  
...  

Different silica and carbonate containing calcium phosphate (CaP) layers were prepared on bioactive glass S53P4 in conventional C-SBF and revised R-SBF. In R-SBF the CaP layer formed faster compared to C-SBF, and the CaP layer formed in R-SBF was amorphous compared to the poorly crystalline bonelike HCA formed in C-SBF. In addition, the influence of chemical composition, dissolution and structure of biomimetically processed CaP layers on osteoclast and osteoblast activity was studied. In general, biomimetic CaP layers on bioactive glass S53P4 did not affect so much on bone cell activity as it was expected compared to the untreated glass. Additionally, it was observed that the mechanism for good osteoclast activity is multifactorial. The optimal surface for osteoclast adhesion and growth was an amorphous CaP having mesoporous nanotopography and proper dissolution rate of calcium and silica. Also osteoblasts grew well on such surface.


Author(s):  
Aliassghar Tofighi ◽  
A. Rosenberg ◽  
M. Sutaria ◽  
S. Balata ◽  
J. Chang

Alpha-bsm® is a first generation self-setting, injectable and moldable apatitic calcium phosphate cement (CPC) based on amorphous calcium phosphate (ACP). ACP was prepared using low temperature double decomposition technique, from a calcium solution (0.16 M), and phosphate solution (0.26 M) in a basic (pH~13) media. ACP was than stabilized using three crystal growth inhibitors (CO32-, Mg2+, P2O74-), freeze-dried, and heated (450 °C, 1h) to remove additional moisture and some inhibitors. Dicalcium phosphate dehydrate (DCPD) was also prepared using wet chemistry at room temperature from calcium and phosphate solution, respectively, 0.3 M and 0.15 M. ACP and DCPD powder were combined at a 1:1 ratio and ground to produce Alpha-bsm® bone cement. The cement is supplied as a powder and when mixed with an appropriate amount (0.8 ml/g) of physiological saline at room temperature, forms an injectable putty-like paste. The paste has a working time of about 45 minutes at room temperature, when stored in a moist environment. The setting reaction proceeds isothermically at body temperature (37°C) in less than 20 minutes, forming a hardened, porous (total porosity 50 to 60%), low crystalline (40% comparing with HA), apatitic calcium phosphate cement with a compressive strength range of 10 to 12 MPa. Extensive pre-clinical studies (rabbit radius critical sized defect, canine tibia osteotomy, sheep tibia, primate fibula fracture healing, and primate fibula critical size defect) demonstrate that Alpha-bsm® undergoes remodeling in conjunction with new bone formation. The next generation of Bone Substitute Materials (Beta-bsmTM and Gamma-bsm TM) are formulated based on the Alpha-bsm® chemistry but differ in powder processing (e.g. milling) technique. These materials are also self-setting, injectable and/or moldable apatitic calcium phosphate cements with improved handling and mechanical properties. The setting & hardening reaction of these new CPCs proceeds isothermically in less than 5 minutes at 37°C and once hardened demonstrate a compressive strength of 30 to 50 MPa. The final product (after full conversion) is a low crystalline (40% compared with Hydroxyapatite), calcium deficient (Ca/P atomic ratio = 1.45) carbonated apatite similar to the composition and structure of natural bone mineral (crystal size: length = 26 nm, width thickness = 8 nm). A desirable feature of these cements is their high surface chemistry (with specific surface area of about 180-200 m2/g) which is ideal for remodeling and controlled release of growth factors. A pilot rabbit critically sized femoral defect study comparing the three synthetic family products demonstrate that they share similar remodeling and resorption characteristics up to 52 weeks. Physico-chemical and mechanical performance of these next generation CPCs are favorable when compared with existing CPCs in the market, specifically material working time (at room temperature), cohesivity in a wet environment and fast setting & hardening rate (at body temperature).


Author(s):  
Marijana Pantovic-Pavlovic ◽  
Miroslav Pavlovic ◽  
Jovanka Kovacina ◽  
Boris Stanojevic ◽  
Jasmina Stevanovic ◽  
...  

Cytotoxicity of amorphous calcium phosphate (ACP) and chitosan lactate (ChOL) multifunctional and hybrid composite coatings on MRC-5 human lung fibroblast cell line is elucidated. ACP/TiO2 and ACP/TiO2/ChOL are deposited onto Ti by novel in situ anodization/anaphoretic process at constant voltage. Cytotoxicity tests showed that there was no significant decrease in the survival of healthy MRC-5 cells eposed to composite samples without chitosan lactate, while there was an increase in the number of viable cells in the sample containing ChOL. The findings show that there is improved cell proliferation, differentiation and cell viability in the ChOL-containing sample, which makes ACP/TiO2/ChOL coating a good candidate for the applications in medicine and stomatology.


Sign in / Sign up

Export Citation Format

Share Document