Anisotropic Co-Hf Thin Films for Micro-Sensors and Micro-Transducers

2015 ◽  
Vol 644 ◽  
pp. 65-69
Author(s):  
V. Madurga ◽  
C. Favieres ◽  
J. Vergara

Thin films of Co-Hf (≈ 86-14 % at.) were grown over Si micro-cantilevers using a glancing-angle deposition technique. A controlled easy direction of magnetisation (anisotropy field μoHk ≈ 0.1 T) in the longitudinal or in the transverse direction of the micro-cantilevers was generated. The mechanical properties of the films under the action of a magnetic field were opposite depending on the magnetisation’s easy direction: i) their deflection was either zero or the maximum value depending on the direction of the applied magnetic field with respect to the parallel or transverse easy direction of magnetisation; ii) the shift in the resonance frequency under a longitudinal or transverse magnetic field was also different depending on the longitudinal or transverse easy direction of magnetisation. The use of these coated devices with micromagnet-like films for sensors and transducers is discussed.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2413
Author(s):  
Yao Shan ◽  
Pian Liu ◽  
Yao Chen ◽  
Haotian Zhang ◽  
Huatian Tu ◽  
...  

Yttrium fluoride (YF3) columnar thin films (CTFs) were fabricated by electron beam evaporation with the glancing angle deposition method. The microstructures and optical properties of YF3 CTFs were studied systematically. The YF3 films grown at different deposition angles are all amorphous. As the deposition angle increases, the columns in YF3 CTFs become increasingly separated and inclined, and the volume fraction of YF3 decreases, resulting in lower refractive indices. This phenomenon is attributed to the self-shadowing effect and limited adatom diffusion. The YF3 CTFs are optically biaxial anisotropic with the long axis (c-axis) parallel to the columns, the short axis (b-axis) perpendicular to the columns, and the other axis (a-axis) parallel to the film interface. The principal refractive index along the b-axis for the 82°-deposited sample is approximately 1.233 at 550 nm. For the 78°-deposited sample, the differences of principal refractive indices between the c-axis and the b-axis and between the a-axis and the b-axis reach the maximum 0.056 and 0.029, respectively. The differences of principal refractive indices were affected by both the deposition angle and the volume fraction of YF3.


2000 ◽  
Vol 616 ◽  
Author(s):  
T. Smy ◽  
D. Vick ◽  
M. J. Brett ◽  
S. K. Dew ◽  
A. T. Wu ◽  
...  

AbstractA new fully three dimensional (3D) ballistic deposition simulator 3D-FILMS has been developed for the modeling of thin film deposition and structure. The simulator may be implemented using the memory resources available to workstations. In order to illustrate the capabilities of 3D-FILMS, we apply it to the growth of engineered porous thin films produced by the technique of GLancing Angle Deposition (GLAD).


Sign in / Sign up

Export Citation Format

Share Document