Mechanical Properties and Thermal Resistance of High Volume Fly Ash Concrete for Energy Efficiency in Building Construction

2016 ◽  
Vol 678 ◽  
pp. 99-108 ◽  
Author(s):  
B. Balakrishnan ◽  
A.S.M. Abdul Awal

The utilization of waste materials in concrete is one of the best value added solutions to the construction industry. With the aim of sustability development, high volume fly ash (HVFA) were tested in concrete by substituting 40, 50 and 60% of OPC with fly ash. Properties studied in this research includes fresh concrete properties, mechanical properties and the resistance of concrete exposed to high temperature. The test result indicates that HVFA concrete positively influenced the workability; however, the setting times of the concrete were longer. It has been found that the development of strength of high volume fly ash concrete was relatively slower, but ahigher strength development at later ages was observed in concrete containing HVFA. The performance of concrete at elevated temperatures reveals that concrete without any fly ash has better resistance than HVFA concrete at high temperature. The use of high volume fly ash results in an acceptable concrete performance, which grants high potential for energy saving in the building construction.

2014 ◽  
Vol 660 ◽  
pp. 312-316
Author(s):  
Mochamad Solikin ◽  
Budi Setiawan

This paper reports an investigation on mechanical properties of high volume fly ash (HVFA) concrete produced using different types of mixing water i.e. tap water and saturated lime water. The mechanical properties of ordinary Portland cement concrete are also investigated as control tests. The concrete were tested for their compressive strength, flexural strength and splitting tensile strength at the curing ages of 56 days. The results showed that strength development of high volume fly ash concrete up to 56 days is lower than ordinary portal cement. In addition, the flexural strength and splitting strength of concrete are lower than ordinary Portland cement. Moreover, the use of saturated lime water as mixing water reduces the mechanical properties of class C high volume fly ash concrete.


2016 ◽  
Vol 722 ◽  
pp. 157-162 ◽  
Author(s):  
Martin Labaj ◽  
Rudolf Hela ◽  
Iveta Hájková

By volume, there is no other material used as much as concrete. Its mechanical properties, durability and favorable price makes concrete the perfect construction material. In last few decades, we are seeing a growing trend of partial Portland cement’s replacement with secondary raw materials, most commonly with fly ash. So-called high volume fly ash (HVFA) concretes usually contains over 50% of it. While HVFA concrete’s long-term properties and price are improved over the classical one, its early age properties are often affected negatively. Here, a highly reactive pozzolans enters the scene. Materials like microsilica and metakaolin are known to accelerate concrete’s strength development and improve early age characteristics. In this paper, nanosilica is used for this purpose. These SiO2 nanoparticles possesses a much higher surface area and thus reactivity. Three mixtures with 0, 40 a 60% portland cement’s replacement with fly ash were prepared and tested with and without addition of small amount of nanosilica. Effects on compressive strength, static and dynamic moduli of elasticity and resistivity against water pressure were observed. Results clearly demonstrates that even with dosage in the range of tenths of percent, nanosilica can significantly improve concrete’s properties.


Author(s):  
D.R. Munaf ◽  
M.S. Besari ◽  
M.M. IqbaP ◽  
And I. Kadir

Results of an experimental investigation on the effect of fly ash content, water cement (w/c) ratio of concrete prepared and cured at temperatures of ambience, 40°C and 60°C are presented in this paper. The mechanical properties investigated here include its workability, its behaviour under compression and splitting tension. Microscopic investigations were also carried out using SEM micrographic images to gain understanding of concrete at its microstructural level.The results indicate that high temperature increases early compressive strengths of concrete, but has decreasing effects on the strengths at later ages. The use of fly ash in concretes cast and cured at elevated temperatures improves the physical and mechanical properties of fresh as well as those of hardened concrete.Various mathematical models describing the properties of such concretes are considered at the end of this paper. The strength properties of high temperature fly ash concrete were best represented by a simple exponential function of time, while its stress-strain relationship could be best described by an exponential function of strain of a more complicated form.


2021 ◽  
Vol 64 (1) ◽  
pp. 19-43
Author(s):  
Jelena Dragaš ◽  
Snežana Marinković ◽  
Vlastimir Radonjanin

The analysis of available experimental results of high-volume fly ash concrete mechanical properties showed that extensive amount of research had been done so far. However, a comprehensive analysis of basic high-volume fly ash concrete mechanical properties was not found in the literature. Having that in mind, the database of 440 high-volume fly ash concrete and 151 cement concrete mixtures collected from literature was made. The application of European Code EN 1992-1-1 prediction models for cement concrete mechanical properties, as well as existing proposals for high-volume fly ash concrete properties, were statistically evaluated on the results from the database. The analysis showed that the prediction models defined in EN 1992-1-1 for compressive strength, tensile strength and for modulus of elasticity can be used for high-volume fly ash concrete, in the given form or with modifications proposed in literature, with similar accuracy and variation of results as for cement concrete. Own model for fly ash efficiency prediction was developed.


2011 ◽  
Vol 2 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Amrutha ◽  
Gopinatha Nayak ◽  
Mattur Narasimhan ◽  
S. Rajeeva

Sign in / Sign up

Export Citation Format

Share Document