Modeling and Simulation of Single Abrasive-Grain Cutting Process in Creep Feed Grinding

2016 ◽  
Vol 693 ◽  
pp. 1241-1246 ◽  
Author(s):  
Zhen Guo Nie ◽  
Gang Wang ◽  
Yong Liang Lin ◽  
Xiang Su ◽  
Yi Ming Rong

Single abrasive-grain cutting is the key research point in grinding process. Because of the narrow space and quick velocity, modeling and simulation method is an approach way to study the single grain cutting. This paper studied the distribution of flow stress and plastic strain, the temperature field near cutting grain. Then experiment was conducted to measure the cutting forces in single grain cutting test. The validation shows good correctness and accuracy of FEA model. Then orthogonal simulation test was carried out to research the influence factors for the grinding forces and temperature distribution. It is found that creep feed grinding has a large grinding forces than high speed grinding in the grain scales. But the maximum temperature value is affected both by depth and speed distinctly.

2012 ◽  
Vol 472-475 ◽  
pp. 927-931
Author(s):  
Xin Li Tian ◽  
Fu Qiang Li ◽  
Ya Tao Mao ◽  
Bao Guo Zhang ◽  
Jian Quan Wang

Introducing the grinding mechanism of axial creep-feed grinding ceramics with a single diamond grain. Establishing the simulation model of a single grain grinding engineering ceramics by axial creep-feed grinding and analyzing the simulation results of the grinding force in the X,Y,Z axis. Finally, the impacts of the wheel speed, axial feed rate and workpiece speed upon grinding forces were discussed by simulating the single diamond abrasive grinding process under different grinding conditions.


2012 ◽  
Vol 565 ◽  
pp. 94-99 ◽  
Author(s):  
Chang Yong Yang ◽  
Jiu Hua Xu ◽  
Wen Feng Ding

In this paper, grinding forces of titanium alloy Ti-6Al-4V are measured during creep feed grinding with brazed cubic boron nitride (CBN) wheels. The effects of process parameters on grinding force, force ratio and specific grinding energy are investigated in detail. The grinding force is low and force ratio is about 1.5, and the specific grinding energy of titanium alloys Ti-6Al-4V is about 65J/mm3. Also, CBN wheels brazed with composite filler of Ag-Cu-Ti and 0.5wt.% lanthanum show better grinding performance than the counterpart brazed with Ag-Cu-Ti filler in this investigation.


Author(s):  
S M Rezaei ◽  
T R A Pearce ◽  
T D Howes

Machining of the roots and shrouds of turbine blades is normally performed by continuous dress creep feed grinding. In this process, the grinding wheel is continuously dressed during the grinding operation, maintaining constant grinding forces and form accuracy. However, continuous-dressing has incurred higher wheel usage. In the tests described in this paper, creep feed grinding of nickel-base alloys was initially performed by continuous dressing to determine the burn barrier and the optimum dresser infeed rate. Pulse dressing, whereby the wheel is kept sharp by a series of dressing pulses, was then applied throughout the grinding cycle in such a way that the grinding forces were kept below the burn barrier. It was shown that wheel usage was reduced by a factor of two with the pulse dressing method. The effect of different grinding coolants under continuous and pulse dressing conditions is also discussed.


2019 ◽  
Vol 68 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Yuming Bi ◽  
Jianhua Zhang ◽  
Qiuming Zhu ◽  
Weite Zhang ◽  
Lei Tian ◽  
...  

2018 ◽  
Vol 12 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Masakazu Fujimoto ◽  
Susumu Ohishi ◽  
Ryosuke Hinaga ◽  
Yuki Kubo ◽  
◽  
...  

This paper discusses the topographic features of wheel working surfaces and the grinding force distributions in wheel-work contact zones of creep feed grinding. Grain cutting edge wear is observed by a Scanning Electron Microscope (SEM) and quantitatively evaluated in terms of attritious wear flat percentage, which is able to characterize the wear behavior. By measuring the normal and tangential grinding force distribution in the grinding zone, the distribution form of grinding forces can be approximated to be triangular and the grinding forces increased rapidly due to workpiece burn. It is shown that the variation of the grinding force and the distribution are closely related to cutting edge wear characteristics.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2020 ◽  
Vol 02 ◽  
Author(s):  
Laurel Stringer ◽  
Sarah Malley ◽  
Darrell M. Hutto ◽  
Jason A. Griggs ◽  
Susana M. Salazar Marocho

Background: The most common approach to remove yttria stabilized zirconia (YSZ) fixed-dental prostheses (FDPs) is by means of diamond burs attached to a high-speed handpiece. This process is time-consuming and destructive. The use of lasers over mechanical instrumentation for removal of FDPs can lead to efficient and predictable restoration retrievability. However, the heat produced might damage the tooth pulp (>42˚C). Objective: The purpose of this study was to determine the maximum temperature (T) reached during the use of different settings of the erbium, chromium:yttrium-scandium-gallium-garnet Er,Cr:YSGG laser through a YSZ ceramic. Methods: YSZ slices (1 mm thick) were assigned into 7 groups. For the control group, a diamond bur was used to cut a 1 mm groove into the YSZ slices. For the 6 experimental groups, the laser was operated at a constant combination of 33% water and 66% air during 30 s with two different power settings (W) at three frequencies (PPS), as follows (W/PPS): 2.5/20, 2.5/30, 2.5/45, 4.5/20, 4.5/30, 4.5/45. The T through the YSZ slice was recorded in degrees Celsius by using a digital thermometer with a K thermocouple. Results: The median T of the control group was 26.5˚C. The use of 4.5 W resulted in the median T (˚C) of 44.2 at 20 PPS, 53.3 at 30 PPS, and 58.9 at 45 PPS, while 2.5 W showed 34.6, 31.6, and 25.0 at 20, 30, and 45 PPS, respectively. KruskalWallis one-way ANOVA showed that within each power setting, the T was similar. The high power and lowest frequency (4.5/20) showed no significant difference from the 2.5 W settings and the control group. Conclusion: The lower power setting (2.5 W) is a potential method for the use of the Er,Cr:YSGG laser to debond YSZ structures. The higher power (4.5 W) with high frequencies (30 and 45 PPS) is unsuitable.


Sign in / Sign up

Export Citation Format

Share Document