Research on the Foamed Concrete with High Volume Fly Ash

2017 ◽  
Vol 727 ◽  
pp. 1062-1066
Author(s):  
Hui Chao Chu ◽  
Xian Jun Lyu ◽  
Yan Zhang

A study has been undertaken to investigate the effects, on the properties of foamed concrete, of replacing large volumes of cement with fly ash. This paper reports the results of the properties of foamed concrete and shows that up to 55% of the cement could be replaced without any significant reduction in compressive strength. Foamed concrete with 55% fly ash and good performance were obtained by optimizing the process parameters. The results showed that the compressive strength, dry density, water absorption and thermal conductivity of foamed concrete with 55% fly ash were 0.71MPa, 244kg/m3, 33%, and 0.045 W/mK respectively.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3311
Author(s):  
Mohamed H. Mussa ◽  
Noor Azim Mohd Radzi ◽  
Roszilah Hamid ◽  
Azrul A. Mutalib

The study aims to investigate the fire performance of reinforced concrete (RC) slab fabricated from high volume fly ash inclusion with nano-silica (HVFANS) under ISO 834 load curve. The HVFANS concrete slab with dimensions of 1850 mm × 1700 mm × 200 mm was tested via an electrical furnace under an exposing temperature of 1100 °C for 120 min. The slab behaviour was evaluated in terms of residual compressive strength, temperature distribution along its thickness, spalling, and cracks. The results revealed that the slab was capable of maintaining 62.19% of its original compressive strength at room temperature after exposure to the above temperature. Moreover, the distribution of temperature revealed that the temperature of concrete cover and bottom reinforcement was less than 300 °C with a maximum spalling depth of 11 mm within the temperature range of 680 to 840 °C. Furthermore, the thermal conductivity index (K) of the HVFANS concrete was determined, and results indicated that thermal conductivity equalled 0.35 W/mK which is considered low, as compared with other concretes tested in current and previous studies.


2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


2011 ◽  
Vol 261-263 ◽  
pp. 13-18
Author(s):  
Ke Qing Li ◽  
De Ping Chen ◽  
Shi Li Zhang ◽  
Bao Shun Liu

Aimed at improving the waterproofing property of foamed concrete, a heat-insulating and waterproofing composite applied in underground engineering was prepared by using cementitious capillary crystalline waterproofing material and foamed concrete. The properties of foamed concrete and composite such as compressive strength, water absorption and thermal conductivity were tested and contrasted, and the compounding reaction mechanism was analyzed. The results show that, compared with foamed concrete, the water absorption of composite has been significantly reduced while the heat-insulating property of foamed concrete is maintained and the overall waterproofing and heat-insulation performance has been significantly improved. A new approach solving underground heat-harm such as high temperature and high humidity is provided.


2021 ◽  
Vol 33 ◽  
pp. 101638 ◽  
Author(s):  
Qian Huang ◽  
Xiaohong Zhu ◽  
Dongsheng Liu ◽  
Liang Zhao ◽  
Min Zhao

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3344 ◽  
Author(s):  
Zhiyuan Zhou ◽  
Massoud Sofi ◽  
Elisa Lumantarna ◽  
Rackel San Nicolas ◽  
Gideon Hadi Kusuma ◽  
...  

To address sustainability issues by facilitating the use of high-volume fly ash (HVFA) concrete in industry, this paper investigates the early age hydration properties of HVFA binders in concrete and the correlation between hydration properties and compressive strengths of the cement pastes. A new method of calculating the chemically bound water of HVFA binders was used and validated. Fly ash (FA) types used in this study were sourced from Indonesia and Australia for comparison. The water to binder (w/b) ratio was 0.4 and FA replacement levels were 40%, 50% and 60% by weight. Isothermal calorimetry tests were conducted to study the heat of hydration which was further converted to the adiabatic temperature rise. Thermo-gravimetric analysis (TGA) was employed to explore the chemically bound water (WB) of the binders. The results showed that Australian FA pastes had higher heat of hydration, adiabatic temperature rise, WB and compressive strength compared to Indonesian FA pastes. The new method of calculating chemically bound water can be successfully applied to HVFA binders. Linear correlation could be found between the WB and compressive strength.


Author(s):  
Ali M. Onaizi ◽  
Nor Hasanah Abdul Shukor Lim ◽  
Ghasan F. Huseien ◽  
Mugahed Amran ◽  
Chau Khun Ma

Sign in / Sign up

Export Citation Format

Share Document