Remarkable Mechanical and Thermal Increments of Epoxy Composites by Graphene Nanosheets and Carbon Nanotubes Synergetic Reinforcement

2017 ◽  
Vol 727 ◽  
pp. 546-552
Author(s):  
Xia Jun Wang ◽  
Dong Lin Zhao ◽  
Dong Dong Zhang ◽  
Cheng Li ◽  
Ran Ran Yao

Graphene nanosheets (GNSs) were modified with aqueous ammonia and hydrogen peroxide, to obtain amine (–NH2) functionalized GNSs (AFGNSs) and enhance the bondings between the GNSs and epoxy matrix. We report an easy and efficient approach to improve the mechanical properties and thermal conductivity of epoxy matrix composites by combining one dimensional multi-walled carbon nanotubes and two dimensional AFGNSs. The long and tortuous MWCNTs can bridge adjacent AFGNSs and inhibit their aggregation, resulting in an increased contact surface area between GNS/MWCNT structures and the polymer. A remarkable synergetic effect between the GNSs and MWCNTs on the enhanced mechanical properties and thermal conductivity of the epoxy composites was demonstrated. The addition of 2 wt.% MWCNT-GNS hybrid fillers improved the tensile strength and flexural strength of the pristine epoxy by 20.71% and 55.51%, respectively. Thermal conductivity increased by 93.71% using MWCNT-GNS hybrid fillers compared to non-derivatised epoxy. This study has demonstrated that 2-D GNSs and 1-D MWCNTs have an obvious synergetic reinforcing effect on the mechanical properties and a remarkable thermal conductivity enhancement in epoxy composites which provides an easy and effective way to design and improve the properties of composite materials.

2014 ◽  
Vol 775-776 ◽  
pp. 284-289 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Wellington Pereira Inácio ◽  
Artur Camposo Pereira ◽  
Michel Picanço Oliveira

The tensile properties of DGEBA/TETA epoxy matrix composites reinforced with different amounts of sisal fibers were evaluated. Composites reinforce with up to 30% in volume of long, continuous and aligned sisal fibers were room temperature tested in an Instron machine. The fracture was analyzed by SEM. The results showed significant changes in the mechanical properties with the amount of sisal fibers. These mechanical properties were compared with other bend-tested composites results. The fracture analysis revealed a weak fiber/matrix interface, which could be responsible for the performance of some properties.


2014 ◽  
Vol 26 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Karolina Gaska ◽  
Andrzej Rybak ◽  
Czeslaw Kapusta ◽  
Robert Sekula ◽  
Artur Siwek

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
C. Kostagiannakopoulou ◽  
E. Fiamegkou ◽  
G. Sotiriadis ◽  
V. Kostopoulos

The present study attempts to investigate the influence of multiwalled carbon nanotubes (MWCNTs) and graphite nanoplatelets (GNPs) on thermal conductivity (TC) of nanoreinforced polymers and nanomodified carbon fiber epoxy composites (CFRPs). Loading levels from 1 to 3% wt. of MWCNTs and from 1 to 15% wt. of GNPs were used. The results indicate that TC of nanofilled epoxy composites increased with the increase of GNP content. Quantitatively, 176% and 48% increase of TC were achieved in nanoreinforced polymers and nanomodified CFRPs, respectively, with the addition of 15% wt. GNPs into the epoxy matrix. Finally, micromechanical models were applied in order to predict analytically the TC of polymers and CFRPs. Lewis-Nielsen model with optimized parameters provides results very close to the experimental ones in the case of polymers. As far as the composites are concerned, the Hashin and Clayton models proved to be sufficiently accurate for the prediction at lower filler contents.


2015 ◽  
Vol 719-720 ◽  
pp. 141-144
Author(s):  
Chen Chi M. Ma ◽  
Sheng Tsung Hsiao ◽  
Wei Hao Liao ◽  
Shin Ming Li ◽  
Yu Sheng Wang ◽  
...  

This study proposed a method to improve the mechanical properties and thermal conductivity of epoxy composites by incorporating multi-walled carbon nanotubes (MWCNTs) and multi-graphene platelets (MGPs) hybrid materials. The MWCNT can bridge adjacent MGPs and inhibit their aggregation effectively, leading to an increased contact surface area between MGP/MWCNT hybrid materials and epoxy matrix. From observing the fractured surface of composite by scanning electron microscope, MWCNT/MGP hybrid materials exhibited better compatibility than individual MWCNT and MGP did.The tensile strength of GD400-MWCNT/MGP/epoxy composites was 35.4% higher than that of epoxy, compared to only a 0.9% increase in tensile strength for MGP/epoxy composites. Thermal conductivity enhanced by 146.9% through incorporating MWCNT/MGP hybrid materials and 23.9% for MGP fillers, compared to non-derivatised epoxy.


2014 ◽  
Vol 548-549 ◽  
pp. 118-123 ◽  
Author(s):  
Li Fei Chen ◽  
Min Cheng ◽  
De Jun Yang ◽  
Lei Yang

This study investigates the synergistic effect of combining multi-walled carbon nanotubes (MWNTs) and Fe2O3nanoparticles on thermal conductivity of nanofluid. Results show that low percentage hybrid fillers loading improve thermal conductivity of water based nanofluid, due to the good dispersion and interfacial adhesion, which is confirmed by scanning electron microscope. Furthermore, the hybrid fillers provide synergistic effect on heat conductive networks. The thermal conductivity enhancement of water based nanofluid containing 0.05 wt % MWNTs and 0.02 wt % Fe2O3nanoparticles is 27.75%, which is higher than that of nanofluid containing 0.2 wt % single MWNTs or Fe2O3nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document