Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy Fabricated by Arc Additive Manufacturing with Post Heat Treatment

2018 ◽  
Vol 789 ◽  
pp. 161-169 ◽  
Author(s):  
Yang Yang Li ◽  
Shu Yuan Ma ◽  
Chang Meng Liu ◽  
Meng Zhang

Wire arc additive manufacturing (WAAM) can achieve low-cost, short-cyclemanufacturing of titanium alloys and has promising application prospects. In this paper, themicrostructure and mechanical properties of both as-deposited and heat-treated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si(TC11) alloys fabricated byWAAM were investigated. The results show that continuousgrain boundary α(αGB) phase and basket-weave microstructure can be observed in the as-depositedTC11 alloy. And the as-deposited alloy exhibits high ductility but low strength. After the annealingtreatment, the microstructure becomes thicker and the strength becomes lower. Accordingly, a duplexheat treatment near β transus was designed. We can observed that the content of α phase in themicrostructure was gradually decreased, and the continuous αGB was broken gradually. As thetemperature increases, the strength and ductility of TC11 alloy increase first and then decrease, andthe best comprehensive mechanical properties are achieved at 970°C.

Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1004 ◽  
Author(s):  
Baoxing Wang ◽  
Guang Yang ◽  
Siyu Zhou ◽  
Can Cui ◽  
Lanyun Qin

A novel on-line vortex cooling powered by low-cost compressed air was proposed to reduce common defects such as low forming precision, coarse grains, and pores caused by heat accumulation in the Wire Arc Additive Manufacturing (WAAM) of aluminum alloy. The impacts of interlayer cooling (IC), substrate cooling (SC), on-line cooling (OL), and natural cooling (NC) processes were compared on the morphology, microstructure, and mechanical properties of as-deposited walls, revealing that the OL process significantly lowers the interlayer temperature and improves forming precision. The high cooling rate produced by the OL process reduced the absorption of hydrogen in the molten pool, lowering porosity. Furthermore, the grains are refined due to the developed undercooling. However, the high cooling rate enhanced the segregation potential of Mg element and raised the content of the β phase. Conclusively, the maximum tensile strength, elongation, and microhardness of the as-deposited wall are achieved via the OL process, and the fine-grain strengthening mechanism plays an important role in improving mechanical properties. The OL process is cheaper and poses a significant effect; it is highly suitable for the additive manufacturing of complex components compared with other forced cooling processes.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 593 ◽  
Author(s):  
Guisheng Yu ◽  
Zhibin Li ◽  
Youlu Hua ◽  
Hui Liu ◽  
Xueyang Zhao ◽  
...  

In this work, Ti-6Al-4V (Ti64) porous structures were prepared by selective laser melting (SLM), and the effects of post heat treatment on its microstructural and mechanical properties were investigated. The results showed that as SLM samples were mainly composed of needle-like α′ martensite. Heat treatment at 750 °C caused α′ phase to decompose, forming a lamellar α+β mixed microstructure. As the heat treatment temperature increased to 950 °C, the width of lamellar α phase gradually increased to 3.1 μm. Heat treatment also reduced the compressive strength of the samples; however, it significantly improved the ductility of the porous Ti64. Moreover, heat treatment improved the energy absorption efficiency of the porous Ti64. The samples heat-treated at 750 °C had the highest energy absorption of 233.6 ± 1.5 MJ/m3 at ε = 50%.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 689
Author(s):  
Trunal Bhujangrao ◽  
Fernando Veiga ◽  
Alfredo Suárez ◽  
Edurne Iriondo ◽  
Franck Girot Mata

Wire Arc Additive Manufacturing (WAAM) is one of the most appropriate additive manufacturing techniques for producing large-scale metal components with a high deposition rate and low cost. Recently, the manufacture of nickel-based alloy (IN718) using WAAM technology has received increased attention due to its wide application in industry. However, insufficient information is available on the mechanical properties of WAAM IN718 alloy, for example in high-temperature testing. In this paper, the mechanical properties of IN718 specimens manufactured by the WAAM technique have been investigated by tensile tests and hardness measurements. The specific comparison is also made with the wrought IN718 alloy, while the microstructure was assessed by scanning electron microscopy and X-ray diffraction analysis. Fractographic studies were carried out on the specimens to understand the fracture behavior. It was shown that the yield strength and hardness of WAAM IN718 alloy is higher than that of the wrought alloy IN718, while the ultimate tensile strength of the WAAM alloys is difficult to assess at lower temperatures. The microstructure analysis shows the presence of precipitates (laves phase) in WAAM IN718 alloy. Finally, the effect of precipitation on the mechanical properties of the WAAM IN718 alloy was discussed in detail.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 513
Author(s):  
Jae Won Kim ◽  
Jae-Deuk Kim ◽  
Jooyoung Cheon ◽  
Changwook Ji

This study observed the effect of filler metal type on mechanical properties of NAB (NiAl-bronze) material fabricated using wire arc additive manufacturing (WAAM) technology. The selection of filler metal type is must consider the field condition, mechanical properties required by customers, and economics. This study analyzed the bead shape for representative two kind of filler metal types use to maintenance and fabricated a two-dimensional bulk NAB material. The cold metal transfer (CMT) mode of gas metal arc welding (GMAW) was used. For a comparison of mechanical properties, the study obtained three specimens per welding direction from the fabricated bulk NAB material. In the tensile test, the NAB material deposited using filler metal wire A showed higher tensile strength and lower elongation (approx. +71 MPa yield strength, +107.1 MPa ultimate tensile strength, −12.4% elongation) than that deposited with filler metal wire B. The reason is that, a mixture of tangled fine α platelets and dense lamellar eutectoid α + κIII structure with β´ phases was observed in the wall made with filler metal wire A. On the other hand, the wall made with filler metal wire B was dominated by coarse α phases and lamellar eutectoid α + κIII structure in between.


Sign in / Sign up

Export Citation Format

Share Document