High Temperature Deformation Behavior and Processing Maps of AZ31 Alloy Deformed in Tension versus Compression

2019 ◽  
Vol 794 ◽  
pp. 305-314
Author(s):  
Kamineni Pitcheswara Rao ◽  
Kalidass Suresh ◽  
Yellapregada Venkata Rama Krishna Prasad

The effect of the applied state-of-stress on the processing maps depicting the mechanisms for hot working of hot extruded Mg-3Al-1Zn alloy has been evaluated. Flow stresses at various temperatures in the range 300 – 500 °C and strain rates in the range 0.0003 – 1 s-1 have been measured by deforming in compression and in tension. Processing maps have been developed from the respective flow stress data at a strain of 0.1. The maps are essentially similar irrespective of the mode of deformation – compression or tension, and exhibited two domains in the temperature and strain rate ranges: (1) 375 – 500 °C and 0.0003 – 0.01 s-1, and (2) 450 – 500 °C and 0.1 – 1 s-1. On the basis of slower strain rates, high tensile ductility, and the apparent activation energy (152 kJ/mole closer to that for self-diffusion), Domain #1 is interpreted in terms of the occurrence of climb controlled dynamic recrystallization. In Domain #2, which occurs at higher strain rates and has an apparent activation energy near to 165 kJ/mole, dynamic recrystallization occurs that involves second order pyramidal slip {11-22} <11-2-3> and recovery by cross-slip of screw dislocations. The state-of-stress imposed on the specimen (compression or tension) does not have any significant effect on the processing maps or the kinetics of hot deformation.

2014 ◽  
Vol 511-512 ◽  
pp. 63-69
Author(s):  
Rui Jia ◽  
Fu Zhong Wang

Deformation behavior of steel 33Μn2v for oil well tube was studied by hot compression tests conducted at various temperatures and strain rates.The Kumar model was developed to predict the hot deformation behavior of steel 33Mn2V for oil well tube.In this regard,the hot compression tests were carried out at the temperatures from 750°C to 1200°C and at the strain rates of 0.02s1 to 0.16 s1.The experimental data were then used to determine the constants of developed constitutive equations. The Kumar model can be represented by ZenerHollomon parameter in a hyperbolic sinusoidal equation form.The apparent activation energy of deformation is calculated to be 342.1481kJ/Mol.Dynamic recrystallization of steel 33Mn2V occur and the completion of the critical deformation is small,termination error and the initial deformation is smaller.Therefore,its easy for the steel 33Mn2V to the occurrence and completion of dynamic recrystallization.


1989 ◽  
Vol 169 ◽  
Author(s):  
J.L. Routbort ◽  
K.C. Goretta ◽  
J.P. Singh

AbstractThe steady‐state flow stress of YBa2Cu3O7‐δ containing 15 to 30 vol.% Ag has been measured in air at nearly constant compressive strain rates between 5 x 10‐6 and 1 x 10‐4 s‐1 from 830 to 900°C. Addition of Ag dramatically decreases the flow stress compared to that of the pure superconductor, but the stress exponents and the activation energy for deformation remain unchanged.


Author(s):  
B. F. Luan ◽  
R. S. Qiu ◽  
Z. Zhou ◽  
K. L. Murty ◽  
J. Zhou ◽  
...  

Hot deformation characteristics of forged and β-quenched Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr (N18 alloy) in the temperature range 625–950°C and in the strain rate range 0.005–5 s−1 have been studied by uniaxial compression testing of Gleeble 3500. For this study, the approach of processing maps has been adopted and their interpretation done using the Dynamic Materials Model (DMM). Based on a series of true stress-true strain curves on various temperatures and strain rates, the flow stress has been summarized and both the strain rate sensitivity index (m) and deformation activation energy (Q) have been calculated by the constitutive equations that flow stress and the relationship of Z parameter and flow stress have been established subsequently. Furthermore, the efficiency of power dissipation (⬜) given by [2m/(m+1)] and improved by Murty has been plotted as a function of temperature and strain rate to obtain different processing maps at different true strain rates ranging from 0.1–0.7. Subsequently, the microstructures of the specimens after compression testing were characterized by electron channeling contrast (ECC) imaging techniques used an FEI Nova 400 field emission gun scanning electron microscopy (FEG-SEM). The results showed that: (i) The hyperbolic sine constitutive equation can describe the flow stress behavior of zirconium alloy, and the deformation activation energy and flow stress equation were calculated under the different temperature stages which insists that the deformation mechanism is not dynamic recovery. (ii) The hot processing maps and its validation were analyzed, which indicated that the DMM theory was reliable and could be adopted as useful tool for optimizing hot workability of Zr. The optimum parameters for extrusion and hammer forging were revealed on the processing maps of 830–950°C, 0.048–2.141 s−1 and 916–950°C, 2.465–5 s−1. (iii) The microstructure of the ingot exhibits a typical lamellar Widmanstatten structure. Under the different strain rates, the grains formed by dynamic recrystallization existed normally in the central zone of the compression samples while the no uniformity of grain size increased with the increasing of strain rate. Meanwhile, due to the dynamic recrystallization as a thermal activation process, the grains size and uniformity increased with the increasing of temperature. In brief, microstructure analysis showed that continuous dynamic recrystallization and geometric dynamic recrystallization operated concurrently during the isothermal compressive deformation.


2016 ◽  
Vol 246 ◽  
pp. 221-224
Author(s):  
Kazimierz J. Ducki ◽  
Kinga Rodak ◽  
Lilianna Wojtynek

The influence of initial soaking and parameters of plastic deformation on the deformability of A-286 superalloy have been presented. The hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s-1, at testing temperatures in the range 900-1150°C and were conducted until total fracture of the samples. Plastic properties of the alloy were characterized by worked out flow curves and the temperature relationships of flow stresses and strain limits. Activation energy for hot working Q was assessed for the alloy after two variants of previous heating, i.e. 1100°C/2 h and 1150°C/2 h.


2009 ◽  
Vol 28 (5) ◽  
pp. 315-322 ◽  
Author(s):  
Jana Bidulská, ◽  
Imrich Pokorný, ◽  
Tibor Kvačkaj, ◽  
Róbert Bidulský, ◽  
Marco Actis Grande,

2013 ◽  
Vol 652-654 ◽  
pp. 1471-1477
Author(s):  
Zhen Yi Huang ◽  
Fu Qiang Chen ◽  
Ping Wang

The single-directional and single-pass compression test were conducted on SA516GR70 vessel steel by a Gleeble-3500 thermal-mechanical simulator with the parameters of 800-1100 oC and 0.01-5 s-1. The influence of deformation temperatures and strain rates on the flow stress and the evolution of dynamic recrystallization of the observed steel were investigated. The results showed that the work hardening, dynamic recovery and dynamic recrystallization softening processes might be occurred successively or simultaneously with the strain increasing. The flow stress-strain curves for the compressed steel can be divided into work hardening stage, transition stage, softening stage and steady-state stage. The dynamic recrystallization occurred in the deformation samples when the observed steel was compressed at above temperatures and strain rates. At a certain deformation temperature, increasing the strain rates was helpful to increase the volume fraction of the dynamic recrystallization and to refine the grains. At a certain strain rate, decreasing the deformation temperatures was helpful to refine and homogenize the macrostructures. The deformation activation energy was 377 kJ/mol and the equation of hot deformation was built by analysing stress-strain curve of SA516GR70 steel.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 288
Author(s):  
Nam-Seok Kim ◽  
Kweon-Hoon Choi ◽  
Seung-Yoon Yang ◽  
Seong-Ho Ha ◽  
Young-Ok Yoon ◽  
...  

A hot compression test of new Al-6Mg and Al-8Mg alloys was conducted to understand the dynamic recrystallization (DRX) behavior by Mg contents. To investigate the hot workability of Al-Mg with high Mg contents, the hot deformation behavior of Al-6Mg and Al-8Mg alloys was analyzed by a hot compression test in the temperature range of 300–450 °C, and the strain rate range of 10−3–100/s. Subsequently, high-temperature deformation behavior was investigated through the processing map and microstructure observation. In this study, the results have shown that, as the Mg contents increase, the maximum and yield strength increase while rapid flow softening after the peak strain has been observed due to accelerated dynamic recrystallization (DRX). Finally, the increase of Mg contents affects an increase of heat dissipation efficiency to be an indicator of regular deformation.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2186
Author(s):  
Mengwei Wu ◽  
Shuangjie Zhang ◽  
Shibo Ma ◽  
Huajun Yan ◽  
Wei Wang ◽  
...  

The high-temperature deformation behavior of Q345 steel is detected by a Gleeble-3800 thermal simulator. The Arrhenius constitutive equation for high-temperature flow stress and the dynamic recrystallization model are constructed. With the secondary development technology, customized modifications are made on existing Deform-3D software. The constructed constitutive model and dynamic recrystallization model are embedded into Deform-3D to realize the secondary development of Deform-3D. The grain size and volume percentage distribution of dynamic recrystallization are obtained by simulating the shear connection process at high temperature and high speed. The results show that the constitutive equation and the dynamic recrystallization model constructed in this paper can be used to predict the evolution of the microstructure. The difference between the prediction results and the experimental data is about 3%. The accuracy of Arrhenius constitutive equation, dynamic recrystallization model and the feasibility of software secondary development are verified.


2010 ◽  
Vol 41 (6) ◽  
pp. 1474-1482 ◽  
Author(s):  
B. Paul ◽  
A. Sarkar ◽  
J.K. Chakravartty ◽  
A. Verma ◽  
R. Kapoor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document