Effect of Pre-Strain on Small Punch Creep Test of 316L Stainless Steel at 373K

2019 ◽  
Vol 795 ◽  
pp. 152-158
Author(s):  
Kai Shang Li ◽  
Jian Peng

Creep does not only appear at high temperature, but also appears at low temperature for 316L stainless steel that threatens the safety of equipment. In this work, the creep behavior of as-received and pre-strained 316L stainless steel at 373K was investigated by uniaxial creep (UC) tests and small punch creep (SPC) tests. The parameters of power-law creep model were determined from stress dependence of UC tests. Then, the creep behavior of SPC test was analyzed by finite element (FE) simulation combined with power-law creep model. Comparing with experimental creep deflection, the results of FE simulation can reasonably reflect the creep behavior of as-received and pre-strained small punch specimens. Based on the comparison of as-received specimen and pre-strained specimen from UC test, SPC test and FE simulation, pre-strain significantly restrains creep behavior of 316L austenitic steel at 373K.

1993 ◽  
Vol 115 (2) ◽  
pp. 200-203 ◽  
Author(s):  
Z. Xia ◽  
F. Ellyin

Constant strain-rate plastic straining followed by creep tests were conducted to investigate the effect of prior plastic straining on the subsequent creep behavior of 304 stainless steel at room temperature. The effects of plastic strain and plastic strain-rate were delineated by a specially designed test procedure, and it is found that both factors have a strong influence on the subsequent creep deformation. A creep model combining the two factors is then developed. The predictions of the model are in good agreement with the test results.


2016 ◽  
Vol 87 (3) ◽  
pp. 285-295 ◽  
Author(s):  
Masayuki Takatera ◽  
Ken Ishizawa ◽  
KyoungOk Kim

The effect of adhesive interlining on the creep behavior of a woven fabric in the bias direction was investigated. Three-element viscoelastic models were used to approximate the creep behavior of a face fabric and adhesive interlining. The creep model of a laminated fabric comprised a six-element model in which two three-element models are connected in parallel with the three-element model. Creep tests were carried out using face fabrics, adhesive interlinings, and their laminated fabrics without and with bonding adhesive interlining by hanging samples in the 45° bias direction under their own weight for 7 days. Creep strains of face fabrics bonded with adhesive interlining were found to be weaker than those of the face fabrics. The creep behavior for the face and interlining fabrics could be approximated using the three-element viscoelastic model with appropriate parameters. The experimental creep behavior of a laminated fabric without bonding was similar to the theoretical behavior. However, the experimental creep of laminated fabrics with bonding interlining was less than the calculated creep, owing to the increase in stiffness due to the adhesive. By revising the six-element model with the strains just after hanging and for 2 days, it was possible to predict the creep strain over 7 days.


2002 ◽  
Vol 17 (8) ◽  
pp. 1945-1953 ◽  
Author(s):  
Maribel L. Saucedo-Muñoz ◽  
Shin-Ichi Komazaki ◽  
Toru Takahashi ◽  
Toshiyuki Hashida ◽  
Tetsuo Shoji

The creep properties for SUS 316 HTB austenitic stainless steel were evaluated by using the small-punch creep test at 650 °C for loads of 234, 286, 338, 408, and 478 N and at 700 °C for loads of 199 and 234 N. The creep curves, determined by means of the small-punch creep test, were similar to those obtained from a conventional uniaxial creep test. That is, they exhibited clearly the three creep stages. The width of secondary creep stage and rupture time tr decreased with the increase in testing load level. The creep rupture strength for the service-exposed material was lower than that of the as-received material at high testing loads. However, the creep resistance behavior was opposite at relatively low load levels. This difference in creep resistance was explained on the basis of the difference in the creep deformation and microstructural evolution during tests. It was also found that the ratio between the load of small-punch creep test and the stress of uniaxial creep test was about 1 for having the same value of creep rupture life.


2003 ◽  
Vol 795 ◽  
Author(s):  
Ming Dao ◽  
Hidenari Takagi ◽  
Masami Fujiwara ◽  
Masahisa Otsuka

ABSTRACT:Detailed finite-element computations and carefully designed indentation creep experiments were carried out in order to establish a robust and systematic method to accurately extract creep properties during indentation creep tests. Finite-element simulations confirmed that, for a power law creep material, the indentation creep strain field is indeed self-similar in a constant-load indentation creep test, except during short transient periods at the initial loading stage and when there is a deformation mechanism change. Self-similar indentation creep leads to a constitutive equation from which the power-law creep exponent, n, the activation energy for creep, Qc and so on can be evaluated robustly. Samples made from an Al-5.3mol%Mg solid solution alloy were tested at temperatures ranging from 573 K to 773 K. The results are in good agreement with those obtained from conventional uniaxial creep tests in the dislocation creep regime.


2013 ◽  
Vol 747 ◽  
pp. 261-264 ◽  
Author(s):  
T. Pulngern ◽  
K. Preecha ◽  
Narongrit Sombatsompop ◽  
V. Rosarpitak

This paper investigates the finite element simulation to predict the creep response of Wood/PVC (WPVC) composite members before and after strengthening by using high carbon steel (HCS) flat bar strip adhered to the tension side. The creep parameters based on power law models of WPVC composites and the HCS flat bars were determined experimentally. Then, the nonlinear finite element analysis (FEA) software of ABAQUS was applied to predict the creep behaviors of composite members using the obtained experimentally creep parameters of individual component of WPVC composites and HCS flat bars. Good correlation between finite element simulation and experimental results are obtained for all cases. ABAQUS software with power law creep model show good potential for prediction the creep response of WPVC composites before and after strengthening.


2008 ◽  
Vol 78 (4) ◽  
Author(s):  
Arnab Majumdar ◽  
Béla Suki ◽  
Noah Rosenblatt ◽  
Adriano M. Alencar ◽  
Dimitrije Stamenović

1987 ◽  
Vol 35 (10) ◽  
pp. 2453-2464 ◽  
Author(s):  
A.N. Campbell ◽  
S.S. Tsao ◽  
D. Turnbull

Sign in / Sign up

Export Citation Format

Share Document