Microstructures and Kinetics of Tungsten Coating Deposited by Chemical Vapor Transport

2019 ◽  
Vol 815 ◽  
pp. 70-80
Author(s):  
Fang Wang ◽  
Yun Peng Hao ◽  
Xiao Dong Yu ◽  
Zhi Hua Nie ◽  
Xiu Chen Zhao ◽  
...  

Chemical vapor transport deposition (CVTD) is an effective method for preparing large tungsten coatings for space thermionic reactors. In this study, a high-density, high-work-function polycrystalline tungsten coating was prepared using a WCl6 transport agent in a concentric tube-type closed transport system. The relationship between the kinetics and the microstructures of the CVTD polycrystalline tungsten coating at the substrate temperature of 1593 K-1793 K and system pressure of 15.93 Pa-106.8 Pa was studied, which provided a basis for the preparation of high-quality tungsten coatings. At a low temperature or a low pressure, the activation energy was approximately 2 kJ/mol, the deposition rate was almost independent of the temperature changes, and the control mechanism was mass transport limited. The tungsten coating had nodules on the surface with pores in the grain boundaries and grew preferentially along <111>. At a high temperature and a high pressure, the apparent activation energy was approximately 90 kJ/mol, the value of order was approximately 1, and the control mechanism in this process range was surface limited. The tungsten coating exhibited a hexagonal pyramidal structure, and the growth direction was preferred along <110>. The average work function of the tungsten coating prepared at a temperature of 1673 K and a system pressure of 106.80 Pa was as high as 5.20 eV.

2016 ◽  
Vol 849 ◽  
pp. 597-602
Author(s):  
Hong Tao Huang ◽  
Yong Feng Wei ◽  
Jian Ping Zheng ◽  
Cheng Wen Tan

Thermionic energy conversion is a process by which thermal energy is transformed into electrical energy directly without the intermediate steps. Microstructure of Chemical Vapor Transport Deposited (CVTD) single crystal tungsten coating working at 1600°C for 1000 h was investigated using optical microscopy and electron backscatter diffraction (EBSD) technique. The experimental results showed that the etching morphology of single crystal tungsten coating was not clear compared to the etching morphology before working. The electro-etched surface of single crystal tungsten coating mainly consist of {110} crystal planes and {112} crystal planes before working at 1600°C. The surface of the single crystal tungsten coating mainly consists of near {110} crystal planes and near {112} crystal planes instead after working at 1600°C.


2010 ◽  
Vol 1258 ◽  
Author(s):  
So Young Jang ◽  
Yun Mi Song ◽  
Han Sung Kim ◽  
Yong Jae Cho ◽  
Young Suk Seo ◽  
...  

AbstractSingle-crystalline rock-salt PbS nanowires (NWs) were synthesized using three different routes; the solvothermal, chemical vapor transport, and gas-phase substitution reaction of pre-grown CdS NWs. They were uniformly grown with the [100] or [110], [112] direction in a controlled manner. In the solvothermal growth, the oriented attachment of the octylamine (OA) ligands enables the NWs to be produced with a controlled morphology and growth direction. As the concentration of OA increases, the growth direction evolves from the [100] to the higher surface-energy [110] and [112] directions. In the synthesis involving chemical vapor transport and the substitution reaction, the use of a lower growth temperature causes the higher surface-energy growth direction to change from [100] to [110]. We fabricated field effect transistors using single PbS NW, which showed intrinsic p-type semiconductor characteristics for all three routes. For the PbS NW with a thinner oxide layer, the carrier mobility was measured to be as high as 10 cm2V−1s−1.


2002 ◽  
Vol 719 ◽  
Author(s):  
K. Thonke ◽  
N. Kerwien ◽  
A. Wysmolek ◽  
M. Potemski ◽  
A. Waag ◽  
...  

AbstractWe investigate by photoluminescence (PL) nominally undoped, commercially available Zinc Oxide substrates (from Eagle Picher) grown by seeded chemical vapor transport technique in order to identify residual donors and acceptors. In low temperature PL spectra the dominant emission comes from the decay of bound exciton lines at around 3.36 eV. Zeeman measurements allow the identification of the two strongest lines and some weaker lines in-between as donorrelated. From the associated two-electron satellite lines binding energies of the major donors of 48 meV and 55 meV, respectively, can be deduced.


2021 ◽  
Vol 40 (1) ◽  
pp. 171-177
Author(s):  
Yue Wang ◽  
Ben Fu Long ◽  
Chun Yu Liu ◽  
Gao An Lin

Abstract Herein, the evolution of reduction process of ultrafine tungsten powder in industrial conditions was investigated. The transition process of morphology and composition was examined via SEM, XRD, and calcination experiments. The results show that the reduction sequence of WO2.9 was WO2.9 → WO2.72 → WO2 → W on the surface, but WO2.9 → WO2 → W inside the oxide particles. With the aid of chemical vapor transport of WO x (OH) y , surface morphology transformed into rod-like, star-shaped cracking, floret, irregularly fibrous structure, and finally, spherical tungsten particles.


Author(s):  
Liang Fang ◽  
Yanping Xie ◽  
Peiyin Guo ◽  
Jingpei Zhu ◽  
Shuhui Xiao ◽  
...  

Vertical NiPS3 nanosheets in situ grown on conducting nickel foam were fabricated by a facile one-step chemical vapor transport method and used as an efficient bifunctional catalyst for overall water splitting.


ChemInform ◽  
2005 ◽  
Vol 36 (44) ◽  
Author(s):  
Udo Steiner ◽  
Werner Reichelt

Sign in / Sign up

Export Citation Format

Share Document