Kinetics of Phase Separation Polyamic Acid (PAA) Solutions with Various Precipitants

2021 ◽  
Vol 899 ◽  
pp. 9-16
Author(s):  
Tatiana S. Anokhina ◽  
Ilya L. Borisov ◽  
Alexey A. Yushkin ◽  
Gleb Vaganov ◽  
Andrey Didenko ◽  
...  

A new method with limited layer of polymeric solution was used to study the kinetics of precipitation of highly concentrated solutions of PAA in various precipitants; it allows to quickly estimate the rate of formation of the polymer membrane, adequately evaluate its morphology without membrane casting and reduce the experimental time for the preparation of a membrane with required porous structure. It was shown that the rate of precipitation of 18 wt. % PAA solution and the morphology of a layer resulting from the phase separation formed upon contact with water differ significantly in a “limited” layer and in a layer of infinite thickness. It was shown that morphology of a layer formed during phase separation of 18 wt. % PAA solution with water in the “unlimited” layer corresponds to morphology, which is formed in precipitation by 50% NMP-water solution of the same polymer solution in a “limited” layer. This supports the assumption about the strong dilution of the precipitant with a solvent when an “unlimited” layer method is used. In addition, during the investigation of the kinetics of the phase separation by water it was found that the rate of precipitation of highly concentrated polymer solution in a “limited” layer (ν = 8.3 μm/s) is significantly higher than in “unlimited” (ν = 1.7 μm/s). Using this method with “limited” layer, the kinetics of the phase separation of 18 wt. % PAA solution in aliphatic alcohols was also investigated; the rate of precipitation of the polymer solution is inversely proportional to their viscosity. Approximately twofold increase of dynamic viscosity with the chain length for each subsequent alcohol in the homologous series, the rate of precipitation of the PAA solution in them was also reduced by about 2 times

1995 ◽  
Vol 60 (2) ◽  
pp. 172-187 ◽  
Author(s):  
Pavel Fott ◽  
František Kolář ◽  
Zuzana Weishauptová

On carbonizing phenolic resins, the development of porous structure takes place which influences the transport properties of carbonized materials. To give a true picture of this effect, specimens in the shape of plates were prepared and carbonized at various temperatures. The carbonizates obtained were studied by adsorption methods, electron microscopy, and mercury porosimetry. Diffusivities were evaluated in terms of measuring the kinetics of wetting and drying. It was found out that the porous structure of specimens in different stages of carbonization is formed mostly by micropores whose volumes were within 0.06 to 0.22 cm3/g. The maximum micropore volume is reached at the temperature of 750 °C. The dependence of diffusivity on the carbonization temperature is nearly constant at first, begins to increase in the vicinity of 400 °C, and at 600 °C attains its maximum. The experimental results reached are in agreement with the conception of the development and gradual closing of the microporous structure in the course of carbonization. The dependence of diffusivity on temperature can be expressed by the Arrhenius equation. In this connection, two possible models of mass transport were discussed.


2020 ◽  
pp. 129088
Author(s):  
Yael Templeman ◽  
Malki Pinkas ◽  
Eli Brosh ◽  
Einat Strumza ◽  
Shmuel Hayun ◽  
...  

1995 ◽  
Vol 398 ◽  
Author(s):  
Joshua W. Kriesel ◽  
Susanne M. Lee

ABSTRACTUsing rf sputtering and post-deposition annealing in a differential scanning calorimeter (DSC), we manufactured bulk (4000 nm) films of crystalline Ge0.83Sn0.17. This Sn concentration is much greater than the solid solubility limit of Sn in Ge (x ≤ 0.01). Continued annealing thermally induces Sn phase separation from the alloy, limiting the ultimate attainable grain size in the metastable crystals. We examine, here, the mechanisms and kinetics of the processes limiting the size of the Ge0.83Sn0.17 polycrystals. From a combination of DSC, electron microprobe, and x-ray diffraction (XRD) measurements, we propose phase transformation mechanisms corresponding to crystallization of amorphous Ge0.83Sn0.17, crystallization of an as-yet unidentified phase of Sn, and phase separation of Sn from the Ge1-xSnx crystals. We were unable to observe the unidentified phase of Sn in XRD, but the phase must be present in the material to account for the quantitative discrepancies (as much as 8 at.%) in Sn percentages determined from each of the DSC, XRD, and electron microprobe measurements. Our models for the various transformation kinetics were corroborated by the subsequent phase-separated Sn melting behavior observed in the DSC: two Sn melting endotherms, one of which was 20–100°C lower than the bulk melting temperature of Sn. This depressed temperature endotherm we speculate represents liquefaction of nanometer-sized (β–Sn clusters.


2021 ◽  
Vol 120 (7) ◽  
pp. 1219-1230 ◽  
Author(s):  
Jerelle A. Joseph ◽  
Jorge R. Espinosa ◽  
Ignacio Sanchez-Burgos ◽  
Adiran Garaizar ◽  
Daan Frenkel ◽  
...  

1999 ◽  
Vol 60 (2) ◽  
pp. 822-830 ◽  
Author(s):  
S. Mazumder ◽  
D. Sen ◽  
I. S. Batra ◽  
R. Tewari ◽  
G. K. Dey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document