Analysis of NiMoP/γ-Al2O3 Catalyst Preparation with Impregnation and Microwave Polyol Methods for Bio-Jet Production

2020 ◽  
Vol 1000 ◽  
pp. 257-264
Author(s):  
Bambang Heru Susanto ◽  
Joshua Raymond Valentino Siallagan

Bio-Jet could be produced by the synthesis of vegetable oil through the hydrodeoxygenation, decarboxylation, decarbonization, and catalytic cracking process. Physical characteristics, activities, and selectivity of the catalyst used will determine the rate, conversion, and yield of the reaction that being carried out. This study aims to compare and obtain the best characteristics of NiMoP/γ-Al2O3 catalysts synthesized using two types of preparation, impregnation and microwave polyol methods, which will be used for bio-jet production. The impregnation method takes more than 24 hours for catalyst preparation, while microwave polyols that use microwaves can synthesize catalysts faster. Both catalysts have almost the same loading on the weight of the catalyst, which in the microwave polyol method has a more dispersed promotor and active site, although the crystallinity level is deficient and tends to be amorphous compared to the impregnation method with high crystallinity. In bio-jet synthesis reaction with operating conditions of 5% catalyst loading by comparison to Coconut Oil, 400°C, and 15 bar, the conversion, yield, and selectivity of catalyst impregnation were 91.705%, 47.639%, and 84.511%, while microwave polyol catalysts were 90.296%, 42.752%, and 82.517%, respectively. In conclusion, microwave polyol provides a more effective and efficient preparation method.

Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 225 ◽  
Author(s):  
Balkis Hazmi ◽  
Umer Rashid ◽  
Yun Hin Taufiq-Yap ◽  
Mohd Lokman Ibrahim ◽  
Imededdine Arbi Nehdi

The present work investigated the biodiesel production from used cooking oil catalyzed by nano-bifunctional supermagnetic heterogeneous catalysts (RHC/K2O/Fe) derived from rice husk doped with K2O and Fe synthesized by the wet impregnation method. The synthesized catalysts (RHC/K2O/Fe) were characterized for crystallinity by X-ray diffraction spectroscopy (XRD), total acidity and basicity using CO2/NH3-TPD, textural properties through Brunauer-Emmett-Teller (BET), thermal stability via thermogravimetric analyzer (TGA), functional group determination by Fourier-transform infrared spectroscopy (FTIR), surface morphology through field emission scanning electron microscopy (FESEM), and magnetic properties by vibrating sample magnetometer (VSM). The VSM result demonstrated that the super-paramagnetic catalyst (RHC/K2O-20%/Fe-5%) could be simply separated and regained after the reaction using an external magnetic field. The operating conditions such as catalyst loading, methanol/oil molar ratio, temperature, and reaction duration were studied. The screened RHC/K2O-20%/Fe-5% catalyst was selected for further optimization and the optimum reaction parameters found were 4 wt % of catalyst, a molar ratio of methanol/oil of 12:1, 4 h reaction duration, and 75 °C reaction temperature with a maximal yield of 98.6%. The reusability study and reactivation results revealed that the nano-bifunctional magnetic catalyst (RHC/K2O-20%/Fe-5%) could be preserved by high catalytic activity even after being reused five times.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


2018 ◽  
Vol 192 ◽  
pp. 03006
Author(s):  
Jakkrapong Jitjamnong

The purpose of this research was to investigate the catalytic activity of Ba loading on calcium oxide (CaO) catalyst by varying the amount of barium added during the synthesis: 5-15 wt%. The waste egg shells were utilized as a CaO heterogeneous catalyst by calcined at 900 °C for 2 h. The Ba/CaO catalysts were prepared by impregnation method and were used as a catalyst in transesterification reaction of canola oil via microwave irradiation under microwave power 300 W. The characterization of catalyst and FAME composition of biodiesel were determined by X-ray fluorescence (XRF), scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), and gas chromatography (GC-FID). The conditions of biodiesel production were operated at 60 °C, 3 wt% of catalyst loading, 9:1 methanol-to-canola oil ratio, and microwave irradiation power was 300W for 2 min. The experimental results found that, the waste egg shells consist mainly of CaCO3, which was decomposed to CaO more than 88 wt% after cacination step. The 15 wt% Ba/CaO catalysts exhibited the best catalytic performance with the FAME conversion higher than 97.68%.


2016 ◽  
Vol 73 (11) ◽  
pp. 2747-2753 ◽  
Author(s):  
Wusong Kong ◽  
Hongxia Qu ◽  
Peng Chen ◽  
Weihua Ma ◽  
Huifang Xie

In this study, Cu2O-CuO/ZSM-5 nanocomposite was synthesized by the impregnation method, and its catalytic performance for the destruction of AO7 in aqueous solutions was investigated. The morphology, structure and surface element valence state of Cu2O-CuO/ZSM-5 were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The operating conditions on the degradation of AO7 by Cu2O-CuO/ZSM-5, such as initial pH values, concentration of AO7 and catalyst dosage were investigated and optimized. The results showed that the sample had good catalytic activity for destruction of AO7 in the absence of a sacrificial agent (e.g. H2O2): it could degrade 91% AO7 in 140 min at 25 °C and was not restricted by the initial pH of the AO7 aqueous solutions. Cu2O-CuO/ZSM-5 exhibited stable catalytic activity with little loss after three successive runs. The total organic carbon and chemical oxygen demand removal efficiencies increased rapidly to 69.36% and 67.3% after 120 min of treatment by Cu2O-CuO/ZSM-5, respectively.


2020 ◽  
pp. 105-113
Author(s):  
M. Farsi

The main aim of this research is to present an optimization procedure based on the integration of operability framework and multi-objective optimization concepts to find the single optimal solution of processes. In this regard, the Desired Pareto Index is defined as the ratio of desired Pareto front to the Pareto optimal front as a quantitative criterion to analyze the performance of chemical processes. The Desired Pareto Front is defined as a part of the Pareto front that all outputs are improved compared to the conventional operating condition. To prove the efficiency of proposed optimization method, the operating conditions of ethane cracking process is optimized as a base case. The ethylene and methane production rates are selected as the objectives in the formulated multi-objective optimization problem. Based on the simulation results, applying the obtained operating conditions by the proposed optimization procedure on the ethane cracking process improve ethylene production by about 3% compared to the conventional condition.  


2017 ◽  
Vol 898 ◽  
pp. 1905-1915 ◽  
Author(s):  
Kai Qi ◽  
Jun Lin Xie ◽  
Feng Xiang Li ◽  
Feng He

The samples of MnOx/TiO2 catalysts supported on cordierite honeycomb ceramics were prepared by a sol-gel-impregnation method, and evaluated for low-temperature (353-473 K) selective catalytic reduction (SCR) of NOx with NH3. The influences of pretreatment on cordierite and catalyst dosage were investigated at first and optimized as follows: pickling for cordierite honeycomb ceramics with 1 mol/L HNO3 for 3 h prior to loading procedure as well as the catalyst dosage of 3-5 wt.%. The activity results indicated that there was an optimum working condition for MnOx/TiO2/cordierite catalysts: NH3/NO molar ratio=1.1, [O2]=3 vol.%, GHSV=5514 h-1, the highest activity of nearly 100% NO conversion could be obtained. As a comparison, the performances of commercialized vanadium-based honeycomb catalyst were also employed, which revealed the narrower scope of application of GHSV and the higher active temperature window. In conclusion, it turns out that the prepared MnOx/TiO2/cordierite catalysts are more applicable as a low-temperature SCR catalyst for NOx removal in a more complicated application environment.


2021 ◽  
Vol 16 (3) ◽  
pp. 673-685
Author(s):  
D. Hadj Bachir ◽  
Hocine Boutoumi ◽  
H. Khalaf ◽  
Pierre Eloy ◽  
J. Schnee ◽  
...  

TiO2 pillared clay was prepared by intercalation of titan polyoxocation into interlamelar space of an Algerian montmorillonite and used for the photocatalytic degradation of the linuron herbicide as a target pollutant in aqueous solution. The TiO2 pillared montmorillonite (Mont-TiO2) was characterized by X-ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), X-Ray fluorescence (XRF), scanning electronic microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), Fourier transformed infra-red (FT-IR), specific area and porosity determinations. This physicochemical characterization pointed to successful TiO2 pillaring of the clay. The prepared material has porous structure and exhibit a good thermal stability as indicated by its surface area after calcination by microwave. The effects of operating parameters such as catalyst loading, initial pH of the solution and the pollutant concentration on the photocatalytic efficiency and COD removal  were evaluated. Under initial pH of the solution around seven, pollutant concentration of 10 mg/L and 2.5 g/L of catalyst at room temperature, the degradation efficiency and COD removal of linuron was best then the other operating conditions. It was observed that operational parameters play a major role in the photocatalytic degradation process. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2019 ◽  
Vol 948 ◽  
pp. 221-227
Author(s):  
Latifah Hauli ◽  
Karna Wijaya ◽  
Ria Armunanto

Catalyst of Chromium (Cr) metal supported on sulfated zirconia (SZ) was prepared by wet impregnation method. This study aim to determine the optimal concentration of Cr metal that impregnated on SZ catalyst. Preparation of catalyst was conducted at different concentrations of Cr metal (0.5%, 1%, 1.5% (w/w)), impregnated on SZ catalyst, then followed by the calcinationand reduction process. Catalysts were charaterized by FTIR, XRD, XRF, SAA, TEM, and acidity test. The results showed the Cr/SZ 1% had the highest acidity value of 8.22 mmol/g which confirmed from FTIR spectra. All the crystal phase of these catalysts were in monoclinic. The specific surface area increased with the increasing of Cr metal concentration on SZ catalyst and the isotherm adsorption-desorption of N2 gas observed all the catalysts as mesoporous material. The impregnation process formed particles agglomeration.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Muhammad Hossain ◽  
Md Siddik Bhuyan ◽  
Abul Md Ashraful Alam ◽  
Yong Seo

The aim of this research was to synthesize, characterize, and apply a heterogeneous acid catalyst to optimum biodiesel production from hydrolyzed waste cooking oil via an esterification reaction, to meet society’s future demands. The solid acid catalyst S–TiO2/SBA-15 was synthesized by a direct wet impregnation method. The prepared catalyst was evaluated using analytical techniques, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the Brunauer–Emmett–Teller (BET) method. The statistical analysis of variance (ANOVA) was studied to validate the experimental results. The catalytic effect on biodiesel production was examined by varying the parameters as follows: temperatures of 160 to 220 °C, 20–35 min reaction time, methanol-to-oil mole ratio between 5:1 and 20:1, and catalyst loading of 0.5%–1.25%. The maximum biodiesel yield was 94.96 ± 0.12% obtained under the optimum reaction conditions of 200 °C, 30 min, and 1:15 oil to methanol molar ratio with 1.0% catalyst loading. The catalyst was reused successfully three times with 90% efficiency without regeneration. The fuel properties of the produced biodiesel were found to be within the limits set by the specifications of the biodiesel standard. This solid acid catalytic method can replace the conventional homogeneous catalyzed transesterification of waste cooking oil for biodiesel production.


2019 ◽  
Vol 6 (3) ◽  
pp. 238-247
Author(s):  
Swapnil R. Bankar

<P>Background: In recent years, green organic transformation has become a challenge for a chemist in areas like social sector, health, and environment. Literature survey revealed that a nano magnetite supported heterogeneous catalysis is an emergent field with huge application in chemical synthesis. </P><P> Objective: In the present article, the aim was to develop a simple and facile method to carry organic reaction under benign media. So, the focus was on the synthesis of nano-magnetite supported molybdenum catalyst and its application in β-enaminones synthesis. </P><P> Methods: Magnetically recyclable heterogeneous ferrite-molybdenum catalyst was prepared by simple impregnation method. The synthesized nanocatalyst Fe-Mo was well analysed by spectroscopic techniques like X-ray diffraction analysis, X-ray photoelectron spectroscopy, transmission electron microscopy, field-emission gun scanning electron microscopy and vibrating-sample magnetometry. The functionalized nanocatalyst Fe-Mo was employed in the synthesis of β-enaminones under solvent free condition. </P><P> Results: The competency of synthesized nanocatalyst-Fe-Mo was observed to be good for the synthesis of β-enaminones derivatives under microwave irradiation and gave excellent yield (86-96%) of the product. The catalyst was recycled for more than five consecutive runs without significant loss in its activity. </P><P> Conclusion: In the present research article, synthesis of highly active, magnetically recyclable Fe- Mo nanocatalyst was obtained from easily available precursor. The MNP was stable under investigated conditions and effective in β-enaminones synthesis. The simple eco-friendly method, low catalyst loading, short transformation time, and reusability of the catalyst thoroughly follow the sustainable protocol.</P>


Sign in / Sign up

Export Citation Format

Share Document